AUTHOR QUERIES

Authors please note: Authors are responsible for any page charges as outlined in the acceptance letter or as indicated on the Instructions for Authors (https://www.ahajournals.org/res/revised-accepted-manuscripts). Unless you have selected open access for your article, or it is otherwise noted on the acceptance letter, page charges are as follows: \$70 per black and white page (print articles only) or \$35 per page (online-only articles only). For each color page (print only), please add \$653/page. If there are any concerns regarding these charges, these should be addressed within 48 hours of receiving the s-proof. Author(s) will be invoiced for all color and page charges post publication. If you have selected open access for your article, please refer to details in the queries below.

AUTHOR PLEASE ANSWER ALL QUERIES

- AQ1—Please note only those terms that are used 5 times or more can be abbreviated, except trial names and proteins, which should be expanded at first use but then can be abbreviated throughout regardless of how many times they appear.
- AQ2—Please turn to page 3 of your proof and review the running head, which will appear in the upper right-hand margins of odd-numbered pages. Running heads must be 50 or fewer characters in length, including spaces and punctuation. If your original short title was longer than 50 characters, we may have shortened it. Please modify if necessary (but observe our length guidelines).
- AQ3-Please check the author's name: Fernando Aros.
- AQ4—Please confirm that all authors' institutional affiliations (including city/state/country locations) are correct as shown in the affiliations footnote.
- AQ5-Please provide the highest academic degree for the corresponding authors "Clemens Wittenbecher and Frank B. Hu."
- AQ6—Please confirm that all authors are included in the correct order in the byline and that all names are spelled correctly, including special characters, accents, middle initials, and degrees, if applicable. For indexing purposes, confirm author names have been correctly identified as given names (blue), surnames (red), and suffixes (black). Color in the byline will not appear on the final published version. Note that journal style discourages listing honorary degrees (FAHA, FRCP, etc.) in the byline; please delete such degrees from the author byline.
- AQ7-Please check and confirm that the url and trial number for the clinical trial information is correct.
- AQ8–Key words may have been edited to match the US National Library of Medicine's Medical Subject Headings (http://www.nlm.nih.gov/mesh/MBrowser.html). If they need modification, please limit the total number of key words to 7.
- AQ9-Please define "NTpro-BNP and HR" in text.

- AQ10—Please review the typeset tables carefully against copies of the originals to verify accuracy of editing and typesetting.
- AQ11-Please define "EVOO" in Table 1.
- AQ12-Please cite "||" in Table 2.
- AQ13—If you have color in your proof, please indicate whether you approve the color charge by returning the color agreement with your corrections. The color agreement can be found at http://links.lww.com/CRES/A1. The rate is \$653 per 1 printed color page. If you have any questions, please contact PE-CirculationResearchJournal@wolterskluwer.com.
- AQ14-Please explain the significance of "*" and "†" in Table 5.
- AQ15-Please carefully review any Acknowledgments, Sources of Funding, and/or Disclosures listed at the end of the manuscript (before the References), and confirm that they are accurate and complete for all authors.
- AQ16-Please confirm as to which author "R.E." refers to in the Sources of Funding section.

Circulation Research

REGULAR ARTICLE

Lipid Profiles and Heart Failure Risk: Results From Two Prospective Studies

AQ1

Clemens Wittenbecher, Fabian Eichelmann, Estefanía Toledo, Marta Guasch-Ferre, Miguel Ruiz-Canela, Jun Li, Fernando Aros, Chih-Hao Lee, Liming Liang, Jordi Salas-Salvado, Clary B. Clish, Matthias B. Schulze, Miguel Angel Martínez-González, Frank B. Hu

RATIONALE: Altered lipid metabolism has been implicated in heart failure (HF) development, but no prospective studies have examined comprehensive lipidomics data and subsequent risk of HF.

OBJECTIVE: We aimed to link single lipid metabolites and lipidomics networks to the risk of developing HF.

METHODS AND RESULTS: Discovery analyses were based on 216 targeted lipids in a case-control study (331 incident HF cases and 507 controls, matched by age, sex, and study center), nested within the PREDIMED (Prevención con Dieta Mediterránea) study. Associations of single lipids were examined in conditional logistic regression models. Furthermore, lipidomics networks were linked to HF risk in a multistep workflow, including machine learning—based identification of the HF-related network clusters, and regression-based discovery of the HF-related lipid patterns within these clusters. If available, significant findings were externally validated in a subsample of the EPIC-Potsdam cohort (2414 at-risk participants, including 87 incident HF cases). After confounder-adjustments, 2 lipids were significantly associated with HF risk in both cohorts: ceramide 16:0 (HR per SD in PREDIMED, 1.28 [95% CI, 1.13–1.47]) and phosphatidylcholine 32_0 (HR per SD in PREDIMED, 1.23 [95% CI, 1.08–1.41]). Additionally, lipid patterns in several network clusters were associated with HF risk in PREDIMED. Adjusted for standard risk factors, an internally cross-validated score based on the significant HF-related lipids that were identified in the network analysis in PREDIMED was associated with a higher HF risk (20 lipids, HR per SD, 2.33 [95% CI, 1.93%–2.81%). Moreover, a lipid score restricted to the externally available lipids was significantly associated with HF incidence in both cohorts (6 lipids, HRs per SD, 1.30 [95% CI, 1.14–1.47] in PREDIMED, and 1.46 [95% CI, 1.17–1.82] in EPIC-Potsdam).

CONCLUSIONS: Our study identified and validated 2 lipid metabolites and several lipidomics patterns as potential novel biomarkers of HF risk. Lipid profiling may capture preclinical molecular alterations that predispose for incident HF.

REGISTRATION: LIPL: https://www.clinicaltrials.gov; Unique identifier: ISRCTN.

AQ7

GRAPHIC ABSTRAUT: A graphic abstract is available for this article.

Key Words: biomarker ■ heart failure ■ metabolism ■ lipidomics ■ lipids

AQ8

eart failure (HF) is a life-threatening disease, which in 2017 affected over 37 million individuals world-wide, and incidence rates are rising. The complex clinical syndrome is characterized by the inability of the heart to generate the output to meet physiological demands (reduced ejection fraction) or adequate cardiac

output but only through compensatory neuro-humoral stimulation (preserved ejection fraction). Etiologically, idiopathic HF cases in older people are generally attributable to either one of the 3 major causes: coronary artery disease (CAD), pressure overload, and type 2 diabetes (T2D).² However, all types of HF confer a substantial

AQ5

AQ6

AQ3

Correspondence to: Clemens Wittenbecher, Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, Email cwittenbecher@hsph.harvard.edu or Frank B. Hu, Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, Email fhu@hsph.harvard.edu

The Data Supplement is available with this article at https://www.ahajournals.org/doi/suppl/10.1161/CIRCRESAHA.120.317883.

For Sources of Funding and Disclosures, see page XXX.

© 2020 American Heart Association, Inc.

Circulation Research is available at www.ahajournals.org/journal/res

Circulation Research. 2021;128:00-00. DOI: 10.1161/CIRCRESAHA.120.317883

February 5, 2021

REGULAR ARTICLE

Novelty and Significance

What Is Known?

- Disturbed lipid metabolism was implicated in the pathogenesis of chronic heart failure through in vitro studies and animal models.
- Plasma lipidomics profiles were associated with prevalent heart failure in cross-sectional studies.

What New Information Does This Article Contribute?

- Baseline plasma concentrations of 2 palmitate-containing lipid metabolites (phosphatidylcholine C16:0/C16:0 and ceramide C16:0) were associated with a higher risk of subsequent heart failure.
- Lipidomics network clusters that included sphingolipids, 2 diacyl phosphatidylcholine-containing clusters, plasmalogens, diacylglycerols, and triacylglycerols were associated with the risk of developing heart failure.
- Lipid scores based on the clusters were associated with a markedly higher heart failure risk.

A link between plasma lipid profiles and heart failure risk is supported by cross-sectional investigations and experimental evidence. However, prospective human studies that relate comprehensive lipidomics screens to the risk of developing heart failure were lacking. Herein, we showed that baseline plasma concentrations of diacyl phosphatidylcholine C16:0/C16:0 and ceramide C16:0 were associated with higher heart failure risk in 2 independent cohorts. We also demonstrated that considering a data-driven lipidomics network revealed additional associations of interrelated lipid clusters with heart failure incidence. In clusters of sphingolipids, diacyl phosphatidylcholines, plasmalogens, diacylglycerols, and triacylglycerols, we detected patterns of lipid metabolites that were significantly associated with heart failure risk. The weighted combination of the selected lipid predictors resulted in scores that were strongly associated with heart failure risk. Our study establishes for the first time a link between circulating lipidomics profiles at baseline and subsequent occurrence of heart failure. Our results encourage mechanistic studies into the biological role of the selected lipid predictors in heart failure etiology and suggest that lipid metabolites may improve risk prediction and facilitate risk stratification for targeted heart failure prevention.

Nonstandard Abbreviations and Acronyms

BMI body mass index **CAD** coronary artery disease

EPIC European Prospective Investigation

into Cancer and Nutrition

FA fatty acid

FDR false discovery rate

HF heart failure

PC diacyl-phosphatidylcholine
PL glycerophospholipid

PREDIMED Prevención con Dieta Mediterránea

SFA saturated fatty acid T2D type 2 diabetes

burden to health care systems and drastically impair the quality of life.³ Therefore, effective prevention strategies are urgently needed.

Epidemiological studies have established several risk factors for incident HF.⁴ Besides age and sex, the risk factors mostly comprise prevalent comorbidities, that is, CAD, atrial fibrillation, T2D, hypertension, and chronic diseases of the lung and the kidney.⁴ At the molecular level, NTpro-BNP is an established HF-predictor but rather reflects activated compensation of decreasing cardiac

performance.⁵ Other biomarkers are closely linked to the HF-related comorbidities.⁴ Recently, the research interest shifted toward identifying biomarkers of pathophysiological processes in early HF development.⁶

The human heart has a continuously high energy demand. However, the failing heart is incapable of consistently generating the required energy for its adequate function. Among the potential molecular mechanisms, lipids are of central importance for short-term metabolic flexibility of the heart, and lipotoxic compounds could be a key factor that link metabolic stress to persistent damage in the myocardial tissue. In animal models, plasma lipidomic signatures reflect alterations in cardiac lipid metabolism that predispose for HF incidence. Moreover, disturbed lipid metabolism is indirectly connected to HF through the common comorbidities, including CAD⁹ and T2D.

Evidence on the link between comprehensive lipid profiling data in humans and HF incidence is lacking. Here, we present findings from a prospective case-control study nested within the PREDIMED trial (Prevención con Dieta Mediterránea),^{11,12} in which we evaluated the association of baseline targeted lipidomics profiles with the risk of developing HF. Our lipidomics approach primarily targeted glycerophospholipids, sphingolipids, plasmalogens, cholesterol esters, and tri-, di- and monoacylglycerols, as well as some specific signaling lipids.

REGULAR ARTICLE

We explored single lipids as risk factors for HF incidence. We also generated a data-driven lipidomics network and investigated whether simultaneous consideration of network-based lipid clusters revealed additional associations between the baseline lipidomics profiles and future HF incidence. Finally, we evaluated the external validity of our findings in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort.

METHODS

Expanded Methods are available online in the Data Supplement.

Data Availability

The authors will be happy to provide access to the PREDIMED dataset (including data dictionaries), making possible the replication of the main analyses used for the present article. Because of the restrictions imposed by the Informed Consent and the Institutional Review Board, bona fide investigators interested in analyzing the PREDIMED dataset used for the present article may submit a brief proposal and statistical analysis plan to the corresponding authors. Upon approval from the PREDIMED Steering Committee and Institutional Review Boards, the data will be made available to them using an onsite secure access data enclave

Study Populations

The PREDIMED study was a multicenter dietary intervention trial that included 7447 participants in 3 intervention arms. 11,12 The discovery analyses in PREDIMED included 331 participants with available blood samples and incident HF during an extended follow-up period (recruitment between June 2003 and June 2009, censoring date December 31, 2017). For each case, between 1 and 3 controls were randomly selected from all participants at risk at the date of HF-diagnosis (incidence density sampling), matched by recruitment center, year of birth (±5 years), and sex (n=507 controls, Online Figure I). The median follow-up time was 12 years (interquartile range, 9.9-12.9 years) among controls, and 7.2 years (interquartile range, 4.8-9.7 years) among cases. The study protocols were approved by the institutional review boards at all study locations (PREDIMED), and the Harvard TH Chan School of Public Health (PREDIMED case-control subproject). All participants gave written, informed consent.

The EPIC-Potsdam cohort included 27 548 participants (16 644 women and 10 904 men), recruited between 1994 and 1998 from the general population within the age range of 35 to 65 years. The replication analyses in EPIC-Potsdam were based on nested case-cohorts for cardiovascular disease and T2D with available lipidomics data, including a random subsample (subcohort, n=1262), all participants with incident T2D (n=820), and all participants with incident primary cardiovascular disease (n=583). From the 2414 at-risk-participants, 87 developed incident HF during follow-up. The median follow-up time was 8.4 years (interquartile range, 7.6–9.3 years) among participants without incident HF, and 5.9 years (interquartile range, 3.2–7.4 years) among participants with an incident event. The study was approved by the Ethics Committee of the

State of Brandenburg, Germany (EPIC-Potsdam). All participants gave written, informed consent.

Art:RES317883

The baseline examination in both studies included assisted assessment of prevalent diseases (including T2D and hypertension), education, smoking, and medication¹⁴ in interviews and with validated questionnaires. Anthropometric variables and blood pressure were assessed by qualified medical personnel in the study centers (Online Note I).

Targeted Plasma Lipid Profiles

In PREDIMED, baseline blood samples were taken after an overnight fast by trained study personnel according to a standard protocol, fractioned, and the EDTA plasma was stored at —80°C in deep freezers. At the Broad Institute (Cambridge, MA), profiles of plasma polar and nonpolar lipids were assessed using a Nexera X2 U-HPLC system (Shimadzu Scientific Instruments; Marlborough, MA) coupled to an Exactive Plus orbitrap mass spectrometer (Thermo Fisher Scientific; Waltham, MA). In EPIC-Potsdam, blood was sampled by medical personnel (most participants did not fast before). The lipidomics data were generated with Metabolon (Morrisville) using the Metabolon Complex Lipid Panel (Online Note II).

Ascertainment of HF

In the PREDIMED study, HF was a prespecified secondary end point and the uniform diagnostic criteria were based on the 2005 guidelines on the diagnosis and treatment of acute and chronic HF of the European Society of Cardiology. ^{15,16} Both cohorts, PREDIMED and EPIC-Potsdam, used multiple sources for detection of incident HF, including medical records of all participants and consultation of the National Death Index (PREDIMED) and self-reports, death certificates, adhoc reviews of medical charts (PREDIMED), linkage to hospital records, and hints from other reported diseases or pharmacological treatments (EPIC-Potsdam). Potential cases of incident HF were validated by physicians. This study only included physician-verified incident HF (I50 of *International Classification of Diseases, 10th Revision*) during the follow-up period (Online Note III).

Statistical Analysis

For lipids with a fraction of missingness below 0.25, we imputed missing values with half the minimal measured value. The inverse normal transformation, which generates a rank-based standard normal distribution (mean=0, SD=1), was applied to all lipid metabolites. We use the following annotation: XX_Y (XX=carbon atoms, Y=double bonds) for the number of carbon atoms and desaturations across several fatty acid (FA)-residues; XX:Y for the number of carbon atoms and desaturations per single acyl chain.

Conditional Logistic Regression

For conditional logistic regression analyses in PREDIMED, we used the clogit function in the survival R-package (https://CRAN.R-project.org/package=survival), stratifying by the matching identifier. We used the Efron-approximation¹⁷ for partial likelihood estimators. According to the incidence density sampling (sampling with replacement), robust standard errors

Wittenbecher et al Lipidomics and Heart Failure Risk

were generated clustering by the participant IDs. The overall model fit was evaluated with the robust score test.¹⁸

Network and Clustering

To generate the lipidomics network, we used the conditional independence-based diacyl-phosphatidylcholine-algorithm. The algorithm was applied to the same lipidomics data in 2 nested case-control studies in the PREDIMED-trial. Then, we retained only edges that corresponded to partial correlations >0.1 in both case-control studies to generate a robust, biologically meaningful network. 20,21 In this network, we detected clusters with the walktrap-algorithm in the igraph R-package (http://igraph.org/).

Random Forest-Based Evaluation of Cluster Importance

We performed a machine-learning-based selection of the most important lipid clusters for HF prediction. To keep the matched case-control design, we prepared the lipidomics data by calculating deviations from matching-strata-specific means²² and grew a random forest for HF-prediction (500 trees, sampling rate of 2/3).²³ Then, we evaluated the importance of lipid clusters for HF prediction in the out-of-bag sample. To this end, we assessed the predictive performance of the random forest model based on information on the full lipidomics data as compared with the lipidomics data with the joint permutation of lipid variables in each of the clusters.²⁴ Clusters were ranked by the extent to which omitting the information in their variables hampered the predictive performance, with the largest increase in prediction error corresponding to the highest cluster importance.

Determining Significant HF-Predictors Within Important Clusters

To select the lipid patterns for high cluster importance, for each of the most important clusters, we simultaneously included all cluster-variables in a conditional logistic regression model with the model specification as described above. Then, we gradually removed the noninformative variables according to the highest P value, until only significant (P<0.05) HF predictors remained (backward selection).²⁵

We also combined significant predictors across clusters into β coefficient-weighted sum scores. Score1 was based on all selected within-cluster predictors of incident HF in PREDIMED. To derive the internally validated β coefficients, we used 10-fold cross-validated elastic net regression 26 (https://CRAN.R-project.org/package=clogitL1). Score2 was based on externally validated within-cluster predictors, using the backwards selection as described above.

All the *P* values in PREDIMED- analyses were derived from 2-sided tests. An alpha-level of 0.05 was considered statistically significant. Where applicable we adjusted for multiple testing by controlling the false discovery rate (FDR).²⁷

Validating the PREDIMED-Discoveries in the EPIC-Potsdam Cohort

For lipids with 2 or more FA-residues, the lipidomics data in EPIC-Potsdam were more specific in terms of carbon

atoms and desaturations contained in the single acyl-chains. Therefore, we first summed all lipids in EPIC-Potsdam corresponding to the sum formula in PREDIMED (Online Note IV). If the HF risk association was replicated on the sum level, we also evaluated which of the underlying lipids in EPIC-Potsdam drove the association. To this end, we simultaneously included all the EPIC-Potsdam lipids that matched the sum formula in PREDIMED and selected the most significant predictors using a backwards procedure.

HF risk associations in the EPIC-Potsdam cohort were assessed in Cox proportional hazards regression models, with age as the underlying time scale, applying the coxph function of the survival R-package (https://CRAN.R-project.org/package=survival). Ties were handled using the Efron method,¹⁷ and we used robust variance estimators clustering by participants' ID. All models accounted for age and sex, as strata variables; further adjustments were similar to the models in PREDIMED. We considered directionally consistent (as compared with PREDIMED) estimates with a 1-tailed *P*<0.05 as significant replications.

RESULTS

Descriptive Statistics

Overall, the PREDIMED trial consisted of participants at increased cardiovascular risk because of a high prevalence of adiposity, T2D, and hypertension. Compared with the age- and sex-matched controls, participants with incident HF tended to have a higher body mass index (BMI), and prevalent T2D and hypertension were more frequent among them (Table 1). Slight difference in the proportion of women between cases and controls arose from the varying number of controls per case. Compared with the PREDIMED sample, the included EPIC-Potsdam participants were younger, had a lower BMI (although overweight and obesity were also common), tended to have higher educational attainment and were more likely to be former or current smokers, but less likely to have prevalent T2D and hypertension (Online Table I). Over 97% of the PREDIMED participants and over 99.9% of the EPIC-Potsdam participants were White Europeans. Based on the covariance structure of the lipidomics data, we constructed a conditional independence lipid network with 26 densely connected clusters (Online Figure II).

AQ10

Single Lipid-HF Associations

After controlling the FDR (<0.05), only ethanolamide 18:1 was significantly associated with HF risk (RR, 1.38 [95% CI, 1.21–1.57]) in the minimally adjusted model. Further adjustment for other HF risk factors, namely prevalent T2D and hypertension at baseline, educational attainment, family history of early CAD, smoking, BMI, and intervention group attenuated the association (1.26 [95% CI, 1.09–1.46]; FDR, 0.066). This effect attenuation was largely observed after simultaneous adjustment for T2D and BMI, while the other factors played a minor role.

AQ9

Wittenbecher et al Lipidomics and Heart Failure Risk

Table 1. Descriptive Statistics of Matched Heart Failure Case-Control Samples in the PREDIMED

LWW

Characteristics	Controls (n=507)	Cases (n=331)				
Age, y	72 (66–75)*	71 (65–75)				
Women	55%	59%				
BMI, kg/sqm	29.2 (26.9-31.8)	30.8 (28.5–33.5)				
Highest education						
Primary school	83%	85%				
Secondary/high school	11%	11%				
College/higher	6%	4%				
Smoker	Smoker					
Never	62%	60%				
Former	11%	14%				
Current	27%	25%				
Family history of CAD	19%	19%				
Prevalent T2D	51%	59%				
Prevalent HT	84%	88%				
Diet intervention group†						
Low-fat (control)	37%	37%				
MedDiet+EVOO	37%	31%				
MedDiet+nuts	26%	32%				

CAD indicates coronary artery disease; HT, hypertension; IQR, interquartile range; PREDIMED, Prevención con Dieta Mediterránea; and T2D, type 2 diabetes.

*Median (IQR), all such values.

AQ11

tParticipants were randomly assigned to 1 of 3 long-term intervention diets: low-fat (control), mediterranean diet (MedDiet) enriched with extravirgin olive oil (+EVOO) or with nuts (+nuts).

In addition, 26 lipids were marginally significantly associated with HF risk but with FDR >0.05 (Online Table II), from which 15 were available in EPIC-Potsdam. Controlling for age and sex, 8 of these lipids were directionally consistently and significantly associated with HF risk in EPIC-Potsdam. Six of these 8 replicated associations were rendered nonsignificant after further adjustment for the other HF risk factors in PREDIMED,

with similar effect attenuation in EPIC-Potsdam (Online Table III). However, the HF-associations of PC 32_0 and ceramide 16:0 were robust against these adjustments in both cohorts (Table 2). In both models, the FDR for these 2 lipid metabolites was significant (<0.05) after adjusting for the 15 tested lipid metabolites in the replication study (Online Table III). Further adjustment for prevalent dyslipidemia (PREDIMED) or HDL- and total cholesterol and total triacylglycerols (EPIC-Potsdam) did not attenuate the associations (Online Table IV). Leveraging the higher FA-resolution of the isomeric lipids in EPIC-Potsdam, we found that the association of PC 32_0 with HF risk was mainly attributable to PC 16:0/16:0 (Table 2).

Lipid Network-HF Associations

We ranked the lipid network clusters according to the joint importance of the cluster-variables for HF-prediction in a random forest model. Within each of the 8 topranking clusters, backwards selection identified a subset of lipids that were significantly associated with HF risk in PREDIMED: cluster 1, ethanolamide 16:1+monoacylglycerol 16:1; cluster 2, 7 sphingolipids; cluster 3, 2 long-chain saturated FA-containing PCs; cluster 4, 6 glycerophospholipids; cluster 5, one diacylglycerol with lc-saturated FA; cluster 6, 5 plasmalogens, cluster 7, 2 diacylglycerols with unsaturated FA; and, cluster 8, 4 triacylglycerols (Table 3; Online Table V). Although not all the selected lipids were available, for 6 out of 8 clusters, the best corresponding model was also significantly predictive for HF incidence in EPIC-Potsdam (Table 3).

By simultaneously considering the cluster-based lipid groups, we detected the following lipid-HF risk associations in PREDIMED and replicated them in EPIC-Potsdam: ceramide 16:0, and sphingomyelin 18:0 (higher HF risk), and sphingomyelin 18:1 (lower HF risk) in cluster 2; PC 32_0 (higher HF risk, attributed to PC 16:0/16:0

Table 2. Single Lipid Associations With Heart Failure Risk

	PREDIMED			EPIC-Potsdam		
Model	Lipid	RR (95% CI)*	P value†	Matched lipid‡	RR (95% CI)*	P value§
M1	PC32_0	1.21 (1.07-1.36)	0.00180	PC 16:0/16:0	1.49 (1.19–1.86)	0.00024
M2		1.23 (1.08–1.41)	0.00224		1.43 (1.14-1.8)	0.00101
M1	CER16:0	1.20 (1.07-1.34)	0.00226	CER 16:0	1.60 (1.29-1.99)	1.2×10⁻⁵
M2		1.28 (1.13-1.47)	0.00017		1.48 (1.17-1.87)	0.00048

BMI indicates body mass index; CAD, coronary artery disease; EPIC, European Prospective Investigation into Cancer and Nutrition; OR, odds ratio; PREDIMED, Prevención con Dieta Mediterránea; RR, relative risk; and T2D, type 2 diabetes.

Two lipids were significantly (P<0.05) associated with HF risk in PREDIMED, and the association was replicated in EPIC-Potsdam in both, a minimally adjusted model (M1, adjusted for age, sex, and study center if applicable) and a confounder-adjusted model (M2, additionally adjusted for T2D- and hypertension prevalence, BMI, smoking status, educational attainment, family history of early CAD, and intervention group if applicable).

*In PREDIMED, the RR correspond to OR from a conditional logistic regression model.

tTwo-tailed *P* value in PREDIMED.

‡For isomeric lipids with multiple matches in EPIC-Potsdam, the best predictor among these lipids was selected according to the lowest P value (backwards selection).

§One-tailed P value in EPIC-Potsdam (testing for directionally consistent estimates only).

||In EPIC-Potsdam, RRs correspond to hazard ratios from a Cox model.

AQ12

Τ4

Table 3.

Most Important Network Clusters for Heart Failure Prediction

		PREDIMED†		EPIC-Potsdam‡	
Rank*	Cluster-characteristic lipids	df	Model P	df	Model P
1	MAGs and EA 16:1	2	0.00272	1	0.44730
2	Sphingolipids	7	5.4×10 ⁻⁸	6	0.00022
3	PCs with long-chain SFAs	2	0.00051	2	0.00068
4	Phospholipids	6	3.2×10 ⁻⁹		0.04645
5	DAGs with long-chain SFA	1	0.00485		
6	Plasmalogens	5	0.00012	2	0.00248
7	DAGs with unsaturated FAs	2	0.00014	2	0.02490
8	TAGs with long-chain FA	4	0.00158	4	3.2×10 ⁻⁶

DAG indicates diacylglycerol; EA, ethanolamide; FA, fatty acid; HF, heart failure; MAG, monoacylglycerol; PC, diacyl-phosphatidylcholine; PREDIMED, Prevención con Dieta Mediterránea; SFA, saturated fatty acid; and TAG, triacylglycerol.

in EPIC-Potsdam) in cluster 3; PC 34_2 (higher HF risk, attributed to PC 18:1/16:1 in EPIC-Potsdam) in cluster 4; phosphatidylethanolamine-plasmalogen 36_1 (higher HF risk, attributed to phosphatidylethanolamine-plasmalogen 18:0/18:1 in EPIC-Potsdam) and phosphatidylethanolamine-plasmalogen (lower HF risk, attributed to phosphatidylethanolamine-plasmalogen 18:1/22:6 in EPIC-Potsdam) in cluster 6; diacylglycerol 34_1 (higher HF risk, attributed to diacylglycerol 16:1/18:0 in EPIC-Potsdam) in cluster 7; and, triacylglycerol 55_2 and triacylglycerol 56_5 1 (higher HF risk, attributed to triacylglycerol 55_2-fa18:1 and triacylglycerol 56_5-fa16:0 in EPIC-Potsdam), and triacylglycerol 58_7 (lower HF risk, attributed to triacylglycerol 58 7-fa16:0 in EPIC-Potsdam; Table 4, Figures 1 and 2). All replicated lipids were consistently associated with HF risk if we used the sum of all isomeric lipids in EPIC-Potsdam (Online Table VI) instead of selecting the strongest predictor among all possible matches.

Several lipid-HF risk associations in PREDIMED were not replicated in EPIC-Potsdam. Cluster 1 contained 2 oppositely directed predictors in PREDIMED, monoacylglycerol 16:1 (lower HF risk) and ethanolamide 16:1 (higher HF risk); the latter was not available in EPIC-Potsdam and monoacylglycerol 16:1 was not significantly associated with HF risk without adjustment for ethanolamide 16:1, in neither of the cohorts. Cluster 5 contained a single significant predictor, diacylglycerol 36 O, which was not available in EPIC-Potsdam (Online Table V). The external validity of the risk associations of 6 lipids, namely, ethanolamide 16:1, sphingomyelin 16:1, phosphatidylethanolamine-plasmalogen 34 3 and phosphatidylethanolamine-plasmalogen 42_11 (higher HF risk), and diacylglycerol 36_0 and PC-plasmalogen 36_2 (lower HF risk), could not be tested because these lipids were not available in the lipidomics dataset in EPIC-Potsdam (Online Table V). Moreover, the network cluster-based analysis suggested 12 HF predictors in

PREDIMED that were not statistically significantly associated with HF risk in EPIC-Potsdam (Online Table V).

Network-Based Lipid Scores and HF Risk

Out of the 29 significant within-cluster predictors, 20 were selected as independent HF predictors based on cross-validated elastic net regression: ethanolamide 16:1, monoacylglycerol 16:0, ceramide 16:0, sphingomyelin 16:1, ceramide 24:1, sphingomyelin 24:0, SM 24:1, PC 32_0, LPC 16:1, PC 30_1, PC 34_2, phosphatidylethanolamine 38_2, Pl 38_4, diacylglycerol 36_0, PEPLG 34_3, PC-plasmalogen 36_2, phosphatidylethanolamine-plasmalogen 40_7, phosphatidylethanolamineplasmalogen 42_11, triacylglycerol 56_5, triacylglycerol 58_7. We summarized the HF association of these lipids in a sum score, weighted with the cross-validated betas (Score1). Higher Score1 points were associated with markedly increased HF risk (RR per SD, 2.38 [95%] CI, 1.99-2.85]). Adjustment for the prevalence of T2D, hypertension, BMI, family history of cardiovascular disease, intervention group, and smoking status did not alter the association of Score 1 with HF incidence (RR per SD, 2.33 [95% CI, 1.93-2.81]; Table 5), and no test for interaction by one of these covariables was statistically significant (data not shown).

We also selected 6 mutually independent HF-predictors from the 11 within-cluster predictors that were replicated in EPIC-Potsdam (PEPLG 36 1, triacylglycerol 56_5, triacylglycerol 40_7, triacylglycerol 55_2, diacylglycerol 34_1, and PC 32_0) and constructed a score, weighted with the β coefficients in PREDIMED (Score2). Higher Score2 was consistently associated with increased HF risk in PREDIMED (RR per SD, 1.39 [95% CI, 1.24-1.57]) and in EPIC-Potsdam (RR per SD, 1.55 [95% CI, 1.25-1.93]; Table 5). The association of the replicated Score2 in PREDIMED was only slightly attenuated after adjustment for all these risk

AO14

^{*}Cluster ranks correspond to the joint cluster-variable importance in a random forest model.

[†]PREDIMED, df (df): number of retained significant HF-predictors; model P: robust score test-based P value for the model fit.

[‡]EPIC-Potsdam, df: number of PREDIMED-selected HF predictors available for replication; model P:log-likelihood test-based P value for the model fit.

Wittenbecher et al Lipidomics and Heart Failure Risk

Table 4. Lipid Clusters and Heart Failure Incidence

	PREDIMED			EPIC-Potsdam Matched lipid‡	RR (95% CI)§	P value∥
Model	Lipid	RR (95% CI)*	P value†			
Cluster 2: sp	ohingolipids	'		'	<u>'</u>	<u> </u>
M1	CER16:0	1.24 (1.06–1.46)	0.00777	CER16:0	1.81 (1.24-2.63)	0.00102
M2		1.27 (1.06–1.51)		0.00848	1.72 (1.14–2.6)	0.00507
M1	SM18:0	1.61 (1.16-2.24)	0.00470	SM18:0	1.71 (0.93-3.16)	0.04294
M2		1.43 (1.01-2.02)	0.04242		1.54 (0.82-2.9)	0.09111
M1	SM18:1	0.57 (0.39-0.85)	0.00604	SM18:1	0.53 (0.3-0.96)	0.01734
M2		0.66 (0.43-1.02)	0.05918		0.63 (0.34–1.15)	0.06556
Cluster 3: lc	-SFA PCs					
M1	PC32_0	1.27 (1.12–1.45)	0.00021	PC16:0/16:0	1.31 (0.99-1.73)	0.02996
M2		1.25 (1.08–1.44)	0.00216		1.34 (1.01-1.79)	0.02200
Cluster 4: pl	nospholipids					
M1	PC34_2	1.66 (1.38–2)	1.1×10 ⁻⁷	PC18:1/16:1	1.82 (1.25-2.63)	0.00097
M2		1.54 (1.25–1.89)	4.3×10 ⁻⁵		1.82 (1.24-2.67)	0.00141
Cluster 6: pl	asmalogens					
M1	PE-PLG36_1	1.16 (1.03-1.32)	0.01811	PE-PLG18:0/18:1	1.48 (1.17-1.86)	0.00052
M2		1.12 (0.98–1.28)	0.08904		1.39 (1.1–1.76)	0.00336
M1	PE-PLG40_7	0.65 (0.51-0.82)	0.00026	PE-PLG18:1/22:6	0.76 (0.6-0.97)	0.01178
M2		0.68 (0.53-0.87)	0.00216		0.79 (0.62-1)	0.02319
Cluster 7: ur	nsaturated FA-DAGs	•			•	
M1	DAG34_1	1.63 (1.3-2.03)	1.7×10 ⁻⁵	DAG16:1/18:0	1.45 (1.02-2.06)	0.02004
M2		1.31 (1.03–1.67)	0.02780		1.35 (0.94–1.93)	0.05001
Cluster 8: TA	AGs					
M1	TAG55_2	1.16 (1–1.34)	0.04918	TAG55_2-fa18:1	1.42 (0.99-2.03)	0.02867
M2		1.13 (0.96–1.33)	0.13176		1.43 (0.95-2.17)	0.04394
M1	TAG56_5	1.26 (1.09-1.45)	0.00208	TAG56_5-fa16:0	3.06 (1.69-5.55)	0.00011
M2		1.2 (1.03-1.41)	0.02159		2.6 (1.41-4.78)	0.00107
M1	TAG58_7	0.55 (0.4-0.76)	0.00024	TAG58_7-fa16:0	0.38 (0.23-0.63)	8.4×10 ⁻⁵
M2		0.49 (0.35-0.7)	0.00010		0.38 (0.23-0.65)	0.00017

M1: controlled for age, sex, and study center (if applicable). M2: additionally adjusted for T2D- and hypertension prevalence, BMI, smoking status, educational attainment, family history of early CAD, and intervention group (if applicable). BMI indicates body mass index; CAD, coronary artery disease; CER, ceramide; d.i., directionally inconsistent; EPIC, European Prospective Investigation into Cancer and Nutrition; OR, odds ratio; PC, diacyl-phosphatidylcholine; PE, phosphatidylethanolamine; PLG, plasmalogen; PREDIMED, Prevención con Dieta Mediterránea; RR, relative risk; SFA, saturated fatty acid; T2D, type 2 diabetes; and TAG, triacylglycerol.

factors (RR per SD, 1.30 [95% CI, 1.14-1.47]). This modest effect attenuation was mostly attributable to adjustment for baseline BMI, and none of the tests for multiplicative interaction was significant. In EPIC-Potsdam, adjustment of the Score2-HF risk association for the analogous covariables had comparably small impact on the effect estimate (RR per SD, 1.46 [95% CI, 1.14-1.86]; Table 5).

Sensitivity Analyses

We adjusted the scores for standard lipid markers (prevalence of dyslipidemia in PREDIMED, total and

HDL-cholesterol and total triacylglycerols in EPIC-Potsdam), which had no appreciable effect on the risk estimates (Online Table VII). We also evaluated whether the marked difference in effect sizes between Score1 (based on all within-cluster hits in PREDIMED) and Score2 (based only on the lipids that were available and replicated in EPIC-Potsdam) was rather attributable to the lack of information (lipids not available in EPIC-Potsdam) or to the failed replications. To this end, we used the same workflow as for Score1 (10-fold crossvalidated elastic net regression) to construct another score in PREDIMED, but removing ethanolamide 16:1, SM 16:1, diacylglycerol 36_0, PC-plasmalogen 36_2,

^{*}PREDIMED: RRs based on OR from a conditional logistic regression model.

[†]Two-tailed P value in PREDIMED.

[‡]For isomeric lipids with multiple matches in EPIC-Potsdam, the best predictor among these lipids was selected according the lowest P value.

[§]In EPIC-Potsdam, RRs correspond to HRs from a Cox model.

^{||}One-tailed P value.

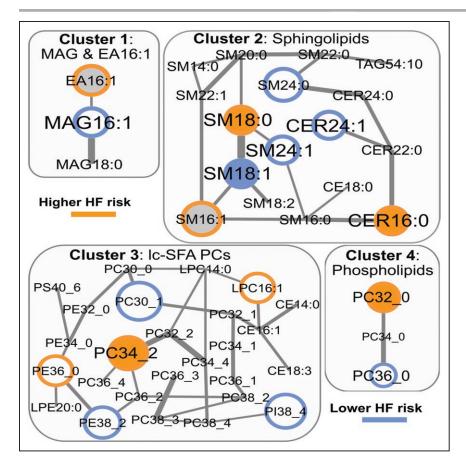
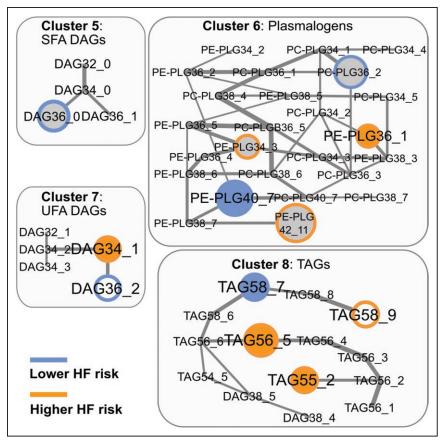


Figure 1. Lipidomics network selected clusters 1 to 4 and heart failure (HF) risk.

Colored border: HF risk association in Prevención con Dieta Mediterránea; colored filling: HF risk association in European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam; gray filling: not available in EPIC-Potsdam; edge-width: partial correlation strength between lipids, adjusted for all other lipids. CER indicates ceramide; EA, ethanolamide; MAG, monoacylglycerol; PC, diacyl-phosphatidylcholine; SFA, saturated fatty acid; and TAG, triacylglycerol.

AQ13


phosphatidylethanolamine-plasmalogen 34_3, phosphatidylethanolamine-plasmalogen 42_11 from the lipid set because we had no corresponding measurements in EPIC-Potsdam. In PREDIMED, the crossvalidated lipid score based on lipids available in EPIC (regardless of the replication results) was associated with a RR for HF of 1.46 (1.30-1.63) per SD, a rather minor difference compared with the risk estimate of the replicated Score2.

Moreover, we assessed the HF risk association of the main lipid markers (ceramide 16:0, PC 32_0, Score1, and Score2) across strata according to diet intervention group. For all selected lipid markers, the HF risk estimates were very similar across the intervention groups (Online Table VIII). Excluding the 35 participants who developed HF during the first 3 years of follow-up in PREDIMED (lag-time analysis) had no appreciable effects on the HF risk estimates of the main lipid markers. The confounder-adjusted HRs per SD (95% CI) were the following: ceramide 16:0, 1.27 (1.12-1.45); PC 32_0, 1.24 (1.07-1.44); Score1, 2.21 (1.80-2.72); and Score2 1.24 (1.07-1.42). Excluding the 21 PREDIMED-participants who developed HF after an acute myocardial infarction had negligible effects, rendering the following confounder-adjusted HR per SD (95% CI): ceramide 16:0, 1.24 (1.08–1.43); PC 32_0, 1.28 (1.10-1.48); Score 1, 2.20 (1.82-2.67); and Score 21.30 (1.13-1.49).

DISCUSSION

In this prospective HF case-control study nested within the PREDIMED trial, we assessed baseline concentrations of 216 targeted lipids. The associations of ceramide 16:0 and PC 32_0 with higher HF risk were robust against confounder adjustment and externally replicated in the EPIC-Potsdam cohort, where auxiliary analyses attributed the latter association to PC 16:0/16:0. We also discovered 8 HF-related lipidomics network clusters in PREDIMED: ethanolamide 16:1+monoacylglycerol 16:1; 7 sphingolipids; 2 long-chain saturated FA-containing PCs; 6 glycerophospholipids; 5 plasmalogens; 3 diacylglycerols from 2 distinct clusters; and 4 triacylglycerols. Albeit not all the lipids were available, for 6 out of 8 patterns, the best-matching models also significantly predicted HF incidence in EPIC-Potsdam. After adjustment for other HF risk factors, a crossvalidated lipid score based on all the significantly HF incidence-related lipids in PREDIMED was associated with a 133% (95% CI, 93%-185%) higher HF risk per SD. A lipid score restricted to the externally available and replicated lipids was also associated with HF incidence, 30% (95% CI, 14%-47%) higher risk per SD in PREDIMED and 46% (95% CI, 17%-82%) higher risk per SD in EPIC-Potsdam.

Our results linked enrichment of palmitate-containing lipids (PC16:0/16:0 and CER16:0) to higher HF

December 10, 2020 7:33 PM

Figure 2. Lipidomics network selected clusters 5 to 8 and heart failure (HF) risk.

Colored border: HF risk association in in Prevención con Dieta Mediterránea; colored **filling**: HF risk association in European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam; gray filling: not available in EPIC-Potsdam; edge-width: partial correlation strength between lipids, adjusted for all other lipids. DAG indicates, diacylglycerol; PC, diacyl-phosphatidylcholine; PE, phosphatidylethanolamine; SFA, saturated fatty acid; and TAG, triacylglycerol.

risk, robust against adjustment for other risk factors for HF and classical blood lipid markers. The simultaneous analysis of interconnected lipid groups corroborated these findings and further identified metabolites with palmitoleic acid (C16:1) and stearate (C18:0) in several lipid classes (sphingomyelins, PCs, plasmalogens, and diacylglycerols) as markers for higher HF risk. To our knowledge, this is the first study that links a lipidomics screen in disease-free participants to future HF incidence. Previous targeted assessments of a limited number of sphingolipids consistently detected elevated HF

risk with high ceramide 16:0 plasma concentrations.^{28,29} However, these studies did not measure the sphingomyelins 16:1 and 18:0, which we identified as complementary high-risk-markers. A FA-profiling study in men linked high relative palmitate abundance and a high C16:1/C16:0-ratio in plasma phospholipids to higher HF risk.30 We assessed higher HF-risk with high concentrations of C16:0- and C16:1-containing lipids, namely PCs 16:0/16:0 and 18:1/16:1 and diacylglycerol 16:1/18:0, which is overall coherent but more specific than the previous reports.

Table 5. Lipid Scores and Heart Failure Incidence

		PREDIMED*		EPIC-Potsdamt	
		RR (95% CI)	P _{PREDIMED}	RR (95% CI)	P _{EPIC}
Score1 (cross-validated)	M1	2.38 (1.99–2.85)	<2.2×10 ⁻¹⁶		
	M2	2.33 (1.93–2.81)	<2.2×10 ⁻¹⁶		
Score2 (replicated)	M1	1.39 (1.24–1.57)	6.0×10 ⁻⁸	1.55 (1.25-1.92)	6.96×10 ⁻⁵
	M2	1.30 (1.14–1.47)	8.2×10 ⁻⁵	1.46 (1.17-1.82)	8.01×10 ⁻⁴

ore1: 20 lipid-markers, selected from all within-cluster predictors in PREDIMED based on cross-validated elastic net reion (Formula: 0.18×EA 16:1-0.04×MAG 16:0+0.14×CER 16:0+0.24×SM 16:1-0.05×CER 24:1-0.18×SM 24:0-0.11×SM 24:1+0.33×PC 32_0+0.17×LPC 16:1-0.19×PC 30_1+0.04×PC 34_2-0.01×PE 38_2-0.35×PI 38_4-0.17×DAG 36_0+0.16×PEPLG 34_3-0.25×PCPLG 36_2-0.22×PEPLG 40_7+0.20×PEPLG 42_11+0.19×TAG 56_5-0.08×TAG 58_7). Score2: 6 mutually independent lipid-markers selected from the 11 externally validated HF-predictors with conditional logistic regression-based backwards selection: (Formula: 0.14×PEPLG 36_1+0.14×TAG 56_5-0.19×PEPLG 40_7-0.21×TAG 55_2+0.25×DAG 34_1+0.21×PC 32_0). M1: controlled for age, sex, and study center (if applicable). M2: additionally adjusted for T2D- and hypertension prevalence, BMI, smoking status, educational attainment, family history of early CAD, and intervention group. BMI indicates body mass index; CAD, coronary artery disease; CER, ceramide; DAG, diacylglycerol; EA, ethanolamide; EPIC, European Prospective Investigation into Cancer and Nutrition; HF, heart failure; MAG, monoacylglycerol; PC, diacyl-phosphatidylcholine; PE, phosphatidylethanolamine; PREDIMED, Prevención con Dieta Mediterránea; RR, relative risk; T2D, type 2 diabetes; and TAG, triacylglycerol.

Wittenbecher et al

REGULAR ARTICLE

We observed associations of very-long-chain-FA-containing sphingolipids (ceramide 24:1, SM 24:0, and SM 24:1) with lower HF risk in PREDIMED when models were mutually adjusted for high-risk sphingolipids. Consistently, higher plasma concentration of CER 24:0²⁸ and SM 24:029 were associated with lower HF risk in other studies, also dependent on simultaneously accounting for the high-risk sphingolipids, and high relative lignoceric acid (C24:0) abundance in total circulating plasma lipids was related to lower HF risk.31 However, the sphingolipid-studies did not measure SM C18:1, for which we replicated the inverse HF risk association in the EPIC-Potsdam cohort. On the pattern-level, we further discovered and replicated lower HF risk associated with the polyunsaturated FA-containing lipids phosphatidylethanolamine-plasmalogen 18:1/22:6 and triacylglycerol 58_7-fa16:0. Several lines of research link PUFAs to HF incidence, 32-34 but the evidence was hitherto not specific in terms of their localization in lipid classes. Metabolites from the same lipid classes with shorter acyl chains and fewer double-bonds (phosphatidylethanolamine-plasmalogen 18:0/18:1; triacylglycerol 55_2-fa18:1, triacylglycerol 56 5-fa16:0) were associated with higher HF risk in PREDIMED and EPIC-Potsdam. To our knowledge, this was the first analysis that linked plasmalogenand triacylglycerol-profiles to HF incidence.

Distinct reasons may explain why some PREDIMED-findings were not replicated in EPIC-Potsdam. The probability of false discoveries among the replicated associations is very low, but a considerable fraction of the nonreplicated marginally significant HF risk-associations in PREDIMED were probably because of chance. However, some of the divergent associations may also reflect differences in the source populations between both cohorts, for example, in terms of genetic background, diet, lifestyle, and socioeconomic background (as reflected in the marked differences in the distribution of highest educational attainment); or differences between the applied lipidomics platforms.

The different platforms certainly precluded the replication of lipids that were not assessed in EPIC-Potsdam. For example, ethanolamide 16:1, SM 16:1, diacylglycerol 36_0, and several PLGs were integral components of the HF-related lipid clusters in PREDIMED with no available measurements in EPIC-Potsdam. In the replication-analyses, this may have also compromised the sensitivity for the associations of other lipids within the same pattern. Overall, it is remarkable that, despite the different lipidomics platform used in EPIC-Potsdam, most model-associations were replicated on the lipid pattern-level.

We summarized the joint effect of the selected lipidpatterns on HF-risk in weighted scores. Score1 was based on all the significant within-cluster predictors in PREDIMED, deriving beta weights with cross-validated elastic net regression to avoid overfitting. While this should have produced internally robust risk estimates, we could not test the external generalizability of the very strong association (138% higher HF risk per SD). Score2 relied on the replicated lipids only, a conservative approach. In both cohorts, higher Score2 was associated with a markedly increased HF risk, 39% per SD in PRE-DIMED, and 55% per SD in EPIC-Potsdam. The slightly stronger estimate for Score2 in EPIC-Potsdam suggests advantages of the more specific measurements for isomeric lipids for risk assessment in the replication cohort.

Our sensitivity analyses revealed that the marked difference in risk estimates between Score1 and Score2 was almost entirely attributable to removing the 6 lipids that were not assessed in EPIC-Potsdam. These results underpin that our multimarker approach relied on simultaneous information on all components. In lipid metabolism, metabolically closely related compounds can have opposite systemic effects, for example, initiating versus resolving inflammatory responses, likely producing divergent disease associations of closely correlated metabolites. Such interdependent risk relations are only detectable with statistical workflows that consider interrelated lipids simultaneously.

Independent of the underlying cause, decreased FAoxidation is a major metabolic characteristic of the failing heart.35 The selection of palmitate-containing lipids as markers for high HF risk is coherent with cardiac lipotoxic effects of palmitate in mechanistic studies.36 The plasma lipidome might integrate information on the heart's metabolic flexibility and the circulating substrate availability, possibly reflecting the myocardial susceptibility to lipotoxic damage. Furthermore, palmitate-containing lipid metabolites, particularly CER 16:0, were implicated in systemic inflammatory and metabolic signaling,37 which regulate cardiac remodeling and contractile mechanics and are, therefore, critical in HF progression.38 Plasma lipid profiles were also linked to T2D and CAD, 9,10,39,40 which are among the major underlying conditions of HF. For example, we have previously shown an association of CER 16:0 with higher cardiovascular disease-risk in PREDIMED.41Therefore, part of the HF-related lipid profiles may reflect general cardiometabolic health, which is linked to HF risk through mediating clinical conditions.

From a translational point of view, lipid-based multibiomarker panels may capture information on common etiological mechanism of several important cardiometabolic end points. In addition to the above-discussed link to cardiometabolic risk, lipid profiles reflect individual traits including genome and microbiome and environmental disease determinants including the diet. The PREDIMED trial and other studies have demonstrated that lipid profiles are modifiable through dietary interventions. However, the Mediterranean diet intervention in the PREDIMED study did not substantially affect HF risk and, concordantly, the risk associations of the selected lipid profiles did not differ between the dietary intervention arms. Studies are warranted that investigate if other diet

Wittenbecher et al Lipidomics and Heart Failure Risk

and lifestyle interventions affect the HF-associated lipid metabolites, and in turn possibly prevent HF incidence.¹⁶

LWW

Several limitations of this study must be acknowledged. The HF diagnosis was based on the 2005 (time of study design) guidelines of the European Society of Cardiology. 15,16 Ever since, the diagnostic criteria for HF have been refined, and future studies should investigate whether the updated case definition affects the risk association of the selected lipid metabolites. However, more specific HF detection is expected to strengthen true risk associations. It would also be interesting to evaluate if the prospective associations for the selected lipids differ between types of HF (eg, preserved versus reduced ejection fraction), but this information was not available for many of HF cases in the PREDIMED trial. Moreover, we used different lipidomics platforms in the discovery and the replication cohort. The effect attenuation of the replicated score due to missing information on some lipids was discussed above. But for the remaining lipids, our results suggest the robustness of measurements despite different laboratories and analytical platforms, both important preconditions for clinical implementation. Still, replicability studies are warranted to systematically investigate the comparability of lipidomics measurements between 2 of the most frequently used platforms. Our study relied on moderate samplesizes. We used a statistical workflow that included resampling and cross-validation to avoid overfitting in the discovery cohort, and we externally validated our main findings, indicating their generalizability. We also increased the sensitivity for true associations by considering data-driven lipid groups. However, similar studies with higher statistical power may find additional robust HF-risk-associations among the lipids that we analyzed. Moreover, investigation of the generalizability of our findings to other races and ethnicities is warranted as we only demonstrated external validity of our findings in middle-aged to older, White populations.

In summary, we identified specific lipid metabolites and lipidomics patterns that were significantly associated with future HF risk in 2 independent cohorts. The available evidence on the role of lipid metabolism and lipotoxicity in HF pathogenesis suggests that the identified lipidomics traits reflect early molecular mechanisms of HF development. Another possible underlying mechanism connects the identified lipids to HF incidence through mediating cardiometabolic conditions, including T2D and CAD. Our results suggest that lipid profiling may provide novel tools for HF risk prediction and risk stratification and thus facilitate personalized prevention efforts.

ARTICLE INFORMATION

Received July 25, 2020; revision received November 20, 2020; accepted December 3, 2020.

Affiliations

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.W., M.G.-F., J.L., C.-H.L., M.A.M.-G., F.B.H.). Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany (C.W., F.E., M.B.S.). German Center for Diabetes Research (DZD), Neuherberg, Germany (C.W., F.E., M.B.S.). Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain (E.T., M.R.-C., M.A.M.-G.). IdiSNA (Instituto de investigación Sanitaria de Navarra), Pamplona, Spain (E.T., M.R.-C., A.M.-G.). CIBER Fisiopatología de la Obesidad y Nutricion (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain (E.T., M.R.-C., F.A., J.S.-S., A.M.-G.). Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, MA (M.G.-F., F.B.H.). Department of Cardiology, University Hospital of Alava, Vitoria, Spain (F.A.). Department of Molecular Metabolism (C.-H.L.), Department of Epidemiology (L.L., F.B.H.), and Department of Biostatistics (L.L.), Harvard T.H. Chan School of Public Health, Boston, MA. Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain (J.S.-S.). Institut d'Investigació Sanitària Pere Virgili (IISPV), University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, Spain (J.S.-S.). Broad Institute and MIT, Harvard University, Cambridge, MA (C.B.C.). Institute of Nutritional Science, University of Potsdam, Germany (M.B.S.).

AO4

Acknowledgments

We thank all participants of the PREDIMED trial (Prevención con Dieta Mediterránea) and the European Prospective Investigation into Cancer and Nutrition-Potsdam study for their collaboration. We acknowledge the excellent assistance of the PREDIMED personnel, and the Human Study Center at the German Institute for Human Nutrition Potsdam-Rehbruecke, led by Dr Manuela Bergmann.

AQ16

Sources of Funding

This study is supported by the National Institutes of Health grants R01HL118264 and R01DK102896. The PREDIMED trial (Prevención con Dieta Mediterránea) was supported by the official funding agency for biomedical research of the Spanish government, the Instituto de Salud Carlos III, through grants provided to research networks specifically developed for the trial (RTIC G03/140 to R.E. and RTIC RD 06/0045 to M.A. Martínez-González) and through the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición and by grants from: the Centro Nacional de Investigaciones Cardiovasculares (CNIC 06/2007); the Fondo de Investigación Sanitaria-Fondo Europeo de Desarrollo Regional (PI04-2239, PI 05/2584, CP06/00100, PI07/0240, PI07/1138, PI07/0954, PI 07/0473, PI10/01407, PI10/02658, PI11/01647, P11/02505, and PI13/00462); the Ministerio de Ciencia e Investigación (AGL-2009-13906-C02 and AGL2010-22319-C03); the Fundación Mapfre 2010, Consejería de Salud de la Junta de Andalucía (PI0105/2007); the Public Health Division of the Department of Health of the Autonomous Government of Catalonia, Generalitat Valenciana (ACOMP06109, GVA-COMP2010-181, GVACOMP2011-151, CS2010-AP-111, and CS2011-AP-042); and the Regional Government of Navarra (P27/2011). The recruitment phase of the EPIC (European Prospective Investigation into Cancer and Nutrition)-Potsdam Study was supported by the Federal Ministry of Science, Germany (01 EA 9401) and the European Union (SOC 95201408 05F02). The follow-up of the EPIC-Potsdam Study was supported by German Cancer Aid (70-2488-Ha I) and the European Community (SOC 98200769 05F02). The lipidomics measurements in EPIC-Potsdam were supported by a grant from the German Ministry of Education and Research (BMBF) and the European Union in the frame of the Joint Programming Initiative 'A Healthy Diet for a Healthy Life' to the Fatty Acid Metabolism-Interlinking Diet with Cardiometabolic Health (FAME)-consortium (01EA1704) and a grant from the German Ministry of Education and Research (BMBF) and the State of Brandenburg (DZD grant 82DZD00302). J. Salas-Salvadó, gratefully acknowledges the financial support by ICREA under the ICREA Academia programme. C. Wittenbecher was supported by an individual fellowship from the German Research Foundation (DFG).

Disclosures

None.

Supplemental Materials

Expanded Materials and Methods (Online Notes I-IV) Online Tables I-VIII Online Figures I and II

REFERENCES

1. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3:7-11. doi: 10.15420/cfr.2016:25:2

February 5, 2021

11

Wittenbecher et al

Lipidomics and Heart Failure Risk

- Thomas S, Rich MW. Epidemiology, pathophysiology, and prognosis of heart failure in the elderly. Heart Fail Clin. 2007;3:381–387. doi: 10.1016/j. hfc.2007.07.004
- Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13:368–378. doi: 10.1038/nrcardio.2016.25
- Sahle BW, Owen AJ, Chin KL, Reid CM. Risk prediction models for incident heart failure: a systematic review of methodology and model performance. J Card Fail. 2017;23:680–687. doi: 10.1016/j.cardfail.2017.03.005
- Butler J, Kalogeropoulos A, Georgiopoulou V, Belue R, Rodondi N, Garcia M, Bauer DC, Satterfield S, Smith AL, Vaccarino V, et al; Health ABC Study. Incident heart failure prediction in the elderly: the health ABC heart failure score. Circ Heart Fail. 2008;1:125–133. doi: 10.1161/ CIRCHEARTFAILURE.108.768457
- Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Simic D, Radovanovic S, Simic T. Novel biomarkers of heart failure. Adv Clin Chem. 2017;79:93–152. doi: 10.1016/bs.acc.2016.09.002
- Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15:805–812. doi: 10.1016/j.cmet.2012.04.006
- Halade GV, Kain V, Tourki B, Jadapalli JK. Lipoxygenase drives lipidomic and metabolic reprogramming in ischemic heart failure. *Metabolism*. 2019;96:22–32. doi: 10.1016/j.metabol.2019.04.011
- Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martinez-Gonzalez MA, Hu FB. Comprehensive metabolomic profiling and incident cardiovascular disease: a systematic review. J Am Heart Assoc. 2017;6:e005705.
- Guasch-Ferré M, Hruby A, Toledo E, Clish CB, Martínez-González MA, Salas-Salvadó J, Hu FB. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. *Diabetes Care*. 2016;39:833–846. doi: 10.2337/dc15-2251
- Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, et al; PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378:e34. doi: 10.1056/NEJMoa1800389
- Martínez-González MÁ, Corella D, Salas-Salvadó J, Ros E, Covas MI, Fiol M, Wärnberg J, Arós F, Ruíz-Gutiérrez V, Lamuela-Raventós RM, et al; PREDIMED Study Investigators. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41:377-385. doi: 10.1093/ije/dyq250
- Boeing H, Korfmann A, Bergmann MM. Recruitment procedures of EPIC-Germany. European Investigation into Cancer and Nutrition. *Ann Nutr Metab.* 1999;43:205–215. doi: 10.1159/000012787
- Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Möhlig M, Pfeiffer AF, Spranger J, Thamer C, Häring HU, et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. *Diabetes Care*. 2007;30:510–515. doi: 10.2337/dc06-2089
- 15. Nieminen MS, Böhm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G, Hasin Y, Lopez-Sendon J, Mebazaa A, Metra M, et al; ESC Committe for Practice Guideline (CPG). Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26:384–416. doi: 10.1093/eurheartj/ehi044
- Papadaki A, Martínez-González MÁ, Alonso-Gómez A, Rekondo J, Salas-Salvadó J, Corella D, Ros E, Fitó M, Estruch R, Lapetra J, et al. Mediterranean diet and risk of heart failure: results from the PREDIMED randomized controlled trial. Eur J Heart Fail. 2017;19:1179–1185. doi: 10.1002/eihf.750
- Hertz-Picciotto I, Rockhill B. Validity and efficiency of approximation methods for tied survival times in Cox regression. *Biometrics*. 1997;53:1151–1156.
- Wooldridge JM. Selection corrections for panel data models under conditional mean independence assumptions. J Econom. 1995;68:115–132.
- Maathuis MH, Colombo D, Kalisch M, Bühlmann P. Predicting causal effects in large-scale systems from observational data. *Nat Methods*. 2010;7:247–248. doi: 10.1038/nmeth0410-247
- Wittenbecher C. Linking Whole-Grain Bread, Coffee, And Red Meat to the Risk of Type 2 Diabetes: Using Metabolomics Networks to Infer Potential Biological Mechanisms [Monograph]. Potsdam University; 2017.
- Iqbal K, Dietrich S, Wittenbecher C, Krumsiek J, Kühn T, Lacruz ME, Kluttig A, Prehn C, Adamski J, von Bergen M, et al. Comparison of metabolite networks from four German population-based studies. *Int J Epidemiol.* 2018;47:2070–2081. doi: 10.1093/ije/dyy119

- Stanfill B, Reehl S, Bramer L, Nakayasu ES, Rich SS, Metz TO, Rewers M, Webb-Robertson BJ; TEDDY Study Group. Extending classification algorithms to case-control studies. *Biomed Eng Comput Biol.* 2019;10:1179597219858954. doi: 10.1177/1179597219858954
- 23. Breiman L. Random forests. Machine Learning. 2001;45:5-32.
- Nicodemus KK, Malley JD, Strobl C, Ziegler A. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics. 2010;11:110. doi: 10.1186/1471-2105-11-110
- Harrell F. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression and Survival Analysis. Springer-Verlag Inc.; 2001.
- Ogutu JO, Schulz-Streeck T, Piepho HP. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. *BMC Proc.* 2012;6(suppl 2):S10. doi: 10.1186/1753-6561-6-S2-S10
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.
- Peterson LR, Xanthakis V, Duncan MS, Gross S, Friedrich N, Völzke H, Felix SB, Jiang H, Sidhu R, Nauck M, et al. Ceramide remodeling and risk of cardiovascular events and mortality. J Am Heart Assoc. 2018;7:e007931.
- Lemaitre RN, Jensen PN, Hoofnagle A, McKnight B, Fretts AM, King IB, Siscovick DS, Psaty BM, Heckbert SR, Mozaffarian D, et al. Plasma ceramides and sphingomyelins in relation to heart failure risk. *Circ Heart Fail*. 2019;12:e005708. doi: 10.1161/CIRCHEARTFAILURE.118.005708
- Djoussé L, Weir NL, Hanson NQ, Tsai MY, Gaziano JM. Plasma phospholipid concentration of cis-palmitoleic acid and risk of heart failure. Circ Heart Fail. 2012;5:703–709. doi: 10.1161/CIRCHEARTFAILURE.112.967802
- Lemaitre RN, McKnight B, Sotoodehnia N, Fretts AM, Qureshi WT, Song X, King IB, Sitlani CM, Siscovick DS, Psaty BM, et al. Circulating very longchain saturated fatty acids and heart failure: the cardiovascular health study. J Am Heart Assoc. 2018;7:e010019. doi: 10.1161/JAHA.118.010019
- Block RC, Liu L, Herrington DM, Huang S, Tsai MY, O'Connell TD, Shearer GC. Predicting risk for incident heart failure with omega-3 fatty acids: from MESA. JACC Heart Fail. 2019;7:651–661. doi: 10.1016/j.jchf.2019.03.008
- Handelsman Y, Shapiro MD. Triglycerides, atherosclerosis, and cardiovascular outcome studies: focus on omega-3 fatty acids. *Endocr Pract* 2017;23:100-112. doi: 10.4158/EP161445.RA
- Zheng Y, Yu B, Alexander D, Manolio TA, Aguilar D, Coresh J, Heiss G, Boerwinkle E, Nettleton JA. Associations between metabolomic compounds and incident heart failure among African Americans: the ARIC Study. Am J Epidemiol. 2013;178:534–542. doi: 10.1093/aje/kwt004
- Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, Iwanaga Y, Narazaki M, Matsuda T, Soga T, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail. 2010;3:420–430. doi: 10.1161/CIRCHEARTFAILURE.109.888479
- Akoumi A, Haffar T, Mousterji M, Kiss RS, Bousette N. Palmitate mediated diacylglycerol accumulation causes endoplasmic reticulum stress, Plin2 degradation, and cell death in H9C2 cardiomyoblasts. Exp Cell Res. 2017;354:85–94. doi: 10.1016/j.yexcr.2017.03.032
- Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510:58–67. doi: 10.1038/nature13475
- Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev. 2017;2017:3920195. doi: 10.1155/2017/3920195
- Fretts AM, Jensen PN, Hoofnagle A, McKnight B, Howard BV, Umans J, Yu C, Sitlani C, Siscovick DS, King IB, et al. Plasma ceramide species are associated with diabetes risk in participants of the strong heart study. J Nutr. 2020;150:1214–1222. doi: 10.1093/jn/nxz259
- Hilvo M, Meikle PJ, Pedersen ER, Tell GS, Dhar I, Brenner H, Schöttker B, Lääperi M, Kauhanen D, Koistinen KM, et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur Heart J. 2020;41:371–380. doi: 10.1093/eurheartj/ehz387
- Wang DD, Toledo E, Hruby A, Rosner BA, Willett WC, Sun Q, Razquin C, Zheng Y, Ruiz-Canela M, Guasch-Ferré M, et al. Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the PREDIMED trial (Prevención con Dieta Mediterránea). Circulation. 2017;135:2028–2040. doi: 10.1161/CIRCULATIONAHA.116.024261
- Guasch-Ferré M, Bhupathiraju SN, Hu FB. Use of metabolomics in improving assessment of dietary intake. *Clin Chem.* 2018;64:82–98. doi: 10.1373/clinchem.2017.272344