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25 Aims To investigate whether metabolic signature composed of multiple plasma metabolites can be used to characterize
adherence and metabolic response to the Mediterranean diet and whether such a metabolic signature is associated
with cardiovascular disease (CVD) risk.

...................................................................................................................................................................................................
30 Methods

and results
Our primary study cohort included 1859 participants from the Spanish PREDIMED trial, and validation cohorts
included 6868 participants from the US Nurses’ Health Studies I and II, and Health Professionals Follow-up Study
(NHS/HPFS). Adherence to the Mediterranean diet was assessed using a validated Mediterranean Diet Adherence

35 Screener (MEDAS), and plasma metabolome was profiled by liquid chromatography-tandem mass spectrometry.
We observed substantial metabolomic variation with respect to Mediterranean diet adherence, with nearly one-
third of the assayed metabolites significantly associated with MEDAS (false discovery rate < 0.05). Using elastic net
regularized regressions, we identified a metabolic signature, comprised of 67 metabolites, robustly correlated with
Mediterranean diet adherence in both PREDIMED and NHS/HPFS (r = 0.28–0.37 between the signature and

40 MEDAS; P = 3� 10-35 to 4� 10-118). In multivariable cox regressions, the metabolic signature showed a significant
inverse association with CVD incidence after adjusting for known risk factors (PREDIMED: hazard ratio [HR] per
standard deviation increment in the signature = 0.71, P < 0.001; NHS/HPFS: HR = 0.85, P = 0.001), and the associ-
ation persisted after further adjustment for MEDAS scores (PREDIMED: HR = 0.73, P = 0.004; NHS/HPFS:
HR = 0.85, P = 0.004). Further genome-wide association analysis revealed that the metabolic signature was signifi-

45 cantly associated with genetic loci involved in fatty acids and amino acids metabolism. Mendelian randomization
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analyses showed that the genetically inferred signature was significantly associated with risk of coronary heart dis-
ease (CHD) and stroke (odds ratios per SD increment in the genetically inferred metabolic signature = 0.92 for
CHD and 0.91 for stroke; P < 0.001).

...................................................................................................................................................................................................
5 Conclusions We identified a metabolic signature that robustly reflects adherence and metabolic response to a Mediterranean

diet, and predicts future CVD risk independent of traditional risk factors, in Spanish and US cohorts.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

10 Keywords Mediterranean diet • Metabolomics • Dietary metabolic response • Cardiovascular disease • Mendelian
randomization analysis • Risk prediction

IntroductionAQ6

The 2015–20 Dietary Guidelines for Americans1 recommend the
15 Mediterranean diet as an important and cost-effective strategy for

the prevention of cardiovascular disease (CVD)—the cause of one-
third of deaths globally.2 The Mediterranean diet is characterized by
high consumption of fruits, vegetables, seafood, nuts, legumes, whole
grains, and olive oil, moderate intake of wine mainly within meals, and

20 lower intake of red/processed meats, saturated fat, and sugary des-
serts and beverages.3 Compared with individual foods/nutrients, diet-
ary patterns reflect a person’s habitual diet, and incorporateAQ7 the
synergistic and accumulative effects of various dietary components,
thereby minimizing confounding by individual dietary factors.

25 Although the health benefits of adhering to the Mediterranean diet
have been demonstrated by intervention trials and prospective co-
hort studies,3–6 individuals’ metabolic responses to the same diet may
vary, and the underlying mechanisms are not completely understood.AQ8

Diet may contribute to disease risk through modulation of meta-
30 bolic pathways and homeostasis7,8; therefore, differences in metabol-

ic responses to diet may explain some individual variations in diet-
disease associations. However, systematic evaluations of adherence
and metabolic responses to complex dietary patterns have been chal-
lenging. Traditional dietary surveys, such as food frequency question-

35 naires (FFQs) and dietary recalls, focus on assessing dietary intakes
and are prone to measurement or reporting errors.9 Validated bio-
logical markers may represent an alternative approach for measuring
dietary intakes (e.g. fatty acids in biospecimens for measuring fat in-
take), but they are only known for a few dietary factors.

40 Recent advances in high-throughput metabolomics profiling open
a new avenue for developing complementary strategies to evaluate
diet and its clinical relevance.10 By measuring intermediate molecules
and products of metabolism, metabolomic profiles reflect individuals’
dietary intakes and other sources of variability in metabolism (e.g.

45 genetic variations11 and diet-gut microbiome interplay7) and may,
therefore, objectively assess the overall adherence and metabolic
responses to complex dietary patterns.10,12 Prior studies have identi-
fied some metabolites associated with intakes of specific foods/
nutrients,13–15 adherence to a few dietary patterns,10,13,16–18 and

50 CVD risk.19,20 However, it remains unknown whether there are
inter-individual variations in the metabolome for individuals consum-
ing the Mediterranean diet and whether such metabolomic variations
are associated with disease risk.

In the present study, leveraging dietary, metabolomic, and clinical
55 data in the Spanish PREDIMED trial (Prevención con Dieta

Mediterránea)3 and three US prospective cohorts (the Nurses’
Health Study [NHS], NHSII, and Health Professionals Follow-Up
Study [HPFS]) (Figure 1), we examined metabolomic variations in re-
lation to Mediterranean diet adherence, and identified and validated a

60metabolic signature reflecting adherence to a Mediterranean diet.
We then assessed whether this signature was associated with CVD
risk independently of known cardiovascular risk factors. In secondary
analyses, we further examined genetic variants associated with the
metabolic signature and whether such a genetic component of the

65signature was associated with CVD risk (Figure 2 and Supplementary
material online, Figure S1).

Methods

Study participants
Our primary study cohort was PREDIMED, a multicentre trial examining

70the efficacy of two Mediterranean diet interventions over a control diet,
for primary prevention of CVD (primary outcome)3 and type 2 diabetes
(T2D; secondary outcome of the trial).21 Two nested case-cohort studies
were designed for metabolomics profiling22,23: the PREDIMED-CVD
study that consisted of 229 incident CVD cases and 788 sub-cohort par-

75ticipants (overlapping n = 37),22 and the PREDIMED-T2D study contain-
ing 251 incident T2D cases and 641 sub-cohort participants (overlapping
n = 53) without T2D at baseline.23 Participants with complete data on
oral glucose tolerance (n = 132) were also included in PREDIMED-T2D.
Data from PREDIMED-CVD and PREDIMED-T2D studies were com-

80bined for developing the metabolic signature model. We excluded indi-
viduals with missing data on baseline diet or named metabolites, and the
PREDIMED-T2D record if the same individual was also included in the
PREDIMED-CVD. A total of 1859 participants remained in the analyses.
Of these, 1556 had repeated measurements of diet and metabolomics at

85year 1 of intervention (Figure 1 and Supplementary material online, Figure
S2). The protocol was approved by the Institutional Review Boards at all
PREDIMED study locations, and all participants provided written
informed consent.

Replication studies were performed in three prospective cohorts:
90NHS (started in 1976 with 121 701 female nurses aged 30–55 years24),

NHSII (started in 1989 with 116 429 female nurses aged 25–42 years24),
and HPFS (started in 1986 with 51 529 male health professionals aged
40–75 years25). Participants in these cohorts completed a baseline ques-
tionnaire regarding lifestyle, medical history, and health-related questions,

95and were followed up biennially. Blood samples were collected from sub-
samples of the NHS during 1989–90,26 NHSII during 1996–99,26 and
HPFS during 1993–9527 (follow-up rate >95%26). Participants in our
study (referred to as NHS/HPFS) were combined from 10 prior metabo-
lomics sub-studies, after quality controls and data standardization in each

2 J. Li et al.
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.sub-study (Supplementary material online, Table S1). We excluded dupli-
cates across sub-studies, individuals missing dietary data or whole sets of
named metabolites, and those having CVD or cancer at study baseline.
Finally, 6868 participants were included in the replication analyses

5 (Figure 1). The Institutional Review Boards at Brigham and Women’s
Hospital and at Harvard T.H. Chan School of Public Health approved the
study.

Metabolomics profiling and genotyping
The plasma metabolomics profiling for the PREDIMED and NHS/HPFS

10 were performed in the same laboratory at the Broad Institute of Harvard
University and M.I.T. (Cambridge, MA), using high-throughput liquid
chromatography-tandem mass spectrometry techniques.28 After quality
filtering and standardization (Supplementary material online,
Supplementary Methods), 302 named metabolites were qualified for pri-

15 mary analyses in the PREDIMED (Supplementary material online, Figure
S3A), with a majority of them also being qualified for replication studies in
the NHS/HPFS (Supplementary material online, Table S1). Genotyping in
NHS/HPFS was performed using six whole-genome arrays and was
merged and imputed based on the 1000 Genomes Project Phase 1

20 Integrated Release Version 3 (ph1v3, hg19) (Supplementary material on-
line, Supplementary Method).29,30 Genetic variants with a minor allele fre-
quency >1% and imputation quality R2 > 0.3 were used in analyses.

Adherence to the Mediterranean dietary

pattern
25 We used a validated 14-item Mediterranean Diet Adherence Screener

(MEDAS, range 0–14) to assess adherence to a traditional Mediterranean

diet.31,32 The screener includes 14 dichotomous questions on habitual
intakes of several food items (Supplementary material online, Table S2). In
PREDIMED, trained dieticians completed the screener during in-person

30dietary-training sessions at baseline and year 1.3 Habitual diet in NHS/
HPFS was assessed using a validated FFQ every 4 years.33 Mediterranean
Diet Adherence Screener was estimated using average dietary intakes
from two FFQs closest to the time of blood draw (NHS: 1986 and 1990;
NHSII: 1995 and 1999; HPFS: 1994 and 1998). Because information on

35olive oil use was as main culinary fat and sofrito intake (Supplementary
material online, Table S2) was not available from FFQs, these two items
were not included in MEDAS calculation in NHS/HPFS.

Ascertainment of cardiovascular disease
Incident CVD was defined as the composite of non-fatal myocardial in-

40farction, non-fatal stroke, and cardiovascular death, occurring from study
baseline (i.e. time of blood collection) through end of follow-up
(PREDIMED: December 2010, median follow-up = 4.8 years; NHS: June
2012, median follow-up = 22.3 years; NHSII: June 2013, median follow-up
= 15.3 years; HPFS: January 2012, median follow-up = 17.6 years). In

45PREDIMED, CVD cases were confirmed by an adjudication committee
based on information collected from contact with participants and family
physicians, ad hoc review of medical charts, and consultation of National
Death Index.3 In NHS/HPFS, an adjudication committee confirmed non-
fatal cases according to standard criteria.34,35 Fatal cases were confirmed

50by autopsy records or death certificate with evidence of prior CVD.
Deaths (follow-up rate > 98%) were identified from next of kin, postal
authorities, or the National Death Index.36

Figure 1 Flowchart of study cohorts. For PREDIMED study, * indicates the total number of participants with complete diet and metabolomics
data at baseline, and # is the number of participants with repeated measurements at year-1 visit. Cardiovascular disease NCC, the nested case-cohort
study for incident cardiovascular disease.

Mediterranean diet, plasma metabolome, and CVD riskAQ1 3
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Assessment of cardiovascular risk factors

and covariates
In PREDIMED, medical history and risk factors were collected through
questionnaires. Anthropometric traits were measured by trained person-

5 nel. Blood lipids, fasting glucose, and other blood biochemistry markers

were assayed using plasma collected at baseline and year 1. Two propen-
sity scores were estimated based on 30 baseline variables to account for
the probability of assignment to each intervention group.3 In NHS/HPFS,
medical history, risk factors, and blood draw characteristics were col-

10lected from biennial questionnaires preceding blood collections and
questionnaires completed at blood draw.

Figure 2 The metabolic signature for adherence to the Mediterranean diet: flow chart for analytic approach and validation. (A) The training and
testing procedures of a metabolic signature for the Mediterranean diet adherence screener (MEDAS). (B) The metabolic signature was trained using
PREDIMED baseline measurements and tested with PREDIMED year-1 (interval validation) and the NHS/HPFS baseline measurements (external val-
idation). The correlations between MEDAS and the 67-metabolite signature in the two validation sets are shown in (C) and (D). In order to include
the training dataset in association analyses, we used the leave-one-out-cross validation (LOOCV) approach to acquire an unbiased metabolic signa-
ture score; and the correlation between MEDAS and the LOOCV-derived score in the training set is presented in (B).AQ13

4 J. Li et al.
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Statistical methods
Associations between individual metabolites (inverse-normal trans-
formed) and MEDAS (and secondarily, its components) was assessed
using multivariable linear regression. A false discovery rate (FDR) <0.05

5 was considered as statistically significant. To identify a metabolic signature
for adherence to the Mediterranean diet, we used MEDAS and the
metabolome from the PREDIMED baseline as the training set (i.e. the
combined data of PREDIMED CVD and T2D nested case-control studies,
to increase sample size, and ensure sufficient statistical power and model

10 precision). Data from PREDIMED year 1 (for internal replication) and
NHS/HPFS baseline (for external validation) were used as the testing sets
(Figure 1). We first standardized all metabolites to the same scale; we
then used elastic net37 to regress MEDAS on the 302 named metabolites
(Supplementary material online, Figure S1B formula #3) and then applied

15 the trained model to the testing sets to calculate the metabolic signature
for the PREDIMED year 1 and NHS/HPFS baseline samples. The metabol-
ic signature was calculated as the weighted sum of the selected metabo-
lites with weights equal to coefficients from the elastic net regression
(Supplementary material online, Figure S1). In NHS/HPFS, we calculated

20 the signature separately in each sub-study (based on all metabolites avail-
able in each sub-study, after standardization) and we combined data from
all sub-studies for subsequent analyses (Supplementary material online,
Table S1; Supplementary methods). In order to avoid overfitting, the
metabolic signature in the training set was obtained using a leave-one-out

25 cross-validation approach.
The metabolic signature and MEDAS were standardized by z-score

(mean = 0, SD = 1) before analyses to ensure that hazard ratios (HRs)
and confidence interval (CI) for CVD risk were comparable between
study cohorts. In PREDIMED, we used weighted Cox regressions with

30 Barlow weights and robust variance estimator22,38 to assess associations
of MEDAS and the metabolic signatures at baseline and year 1 with inci-
dent CVD risk (277 incident events from baseline; 143 incident events
from year 1), within the CVD nested case-cohort study (Supplementary
material online, Figure S2). Multivariable models were stratified by inter-

35 vention groups and study centres, adjusting for age, sex, body mass index
(BMI), smoking status, diabetes, dyslipidaemia, hypertension, and family
history of premature coronary heart disease (CHD). In sensitivity analy-
ses, we further adjusted for blood lipids, alanine aminotransferase, aspar-
tate aminotransferase, estimated glomerular filtration rate, or propensity

40 scores.3 In NHS/HPFS, associations of MEDAS and metabolic signature
with CVD risk were estimated using Cox regressions, stratifying by co-
hort, original sub-studies, and original case-control status, and adjusting
for age, fasting status, aspirin use, BMI, smoking status, physical activity,
diabetes, dyslipidaemia, hypertension, and family history of premature

45 CHD. As a sensitivity analysis, we further adjusted for all MEDAS food
components instead of the total MEDAS score. A P < 0.05 was consid-
ered as statistically significant. Associations between individual metabo-
lites (inverse-normal transformed) and CVD risk were assessed by the
same model. Associations between MEDAS/metabolic signature and car-

50 diovascular risk factors were analysed using multivariable linear regres-
sions, and Bonferroni corrections were used to define statistical
significance.

We performed a genome-wide association study (GWAS) of the
metabolic signature in 1925 NHS/HPFS participants with both metabolo-

55 mics and genotype data (Supplementary material online, Table S3), adjust-
ing for age, sex, MEDAS, the first five genetic principle components, and/
or interactions between variants and MEDAS. A P < 5� 10-8 was consid-
ered genome-wide significant and a P < 1� 10-6 as marginally significant.
We applied the mode-based estimate of Hartwig (MBE), a Mendelian ran-

60 domization (MR)39 approach, to examine the potential causal associa-
tions of the metabolic signature on risk of CHD and stroke, based on

GWAS summary statistics obtained separately for the metabolic signa-
ture, CHD, and stroke. Variants associated with the signature at
P < 1� 10-6 were used as instrumental variables. To maximize the statis-

65tical power, we used the most recent consortia GWAS summary statis-
tics for CHD (122 733 cases, 424 528 controls)40 and stroke (40 585
cases, 406 111 controls of Europeans).41 Furthermore, we examined the
role of potential mediators (i.e. BMI, lipid, systolic blood pressure, and dia-
betes) using a two-step MR analysis.

70Detailed descriptions of all study methods are provided in
Supplementary material online, Supplementary Methods.

Results

Characteristics of the study participants
and adherence to the Mediterranean diet

75Our primary study cohort included 1859 participants (1556 of whom
had year-1 repeated measurements) from PREDIMED (58% women,
mean age = 67 years). Baseline characteristics of participants in the
sub-cohort were similar to those in the whole trial,3 with an
improved lipid profile and a lower prevalence of hypertension and

80dyslipidaemia after 1 year of dietary intervention (Table 1A). The rep-
lication study included 6868 participants from the NHS (all women,
mean age = 56 years), NHSII (all women, mean age = 45 years), and
HPFS (all men, mean age = 64 years) (Table 1B). Compared with par-
ticipants from PREDIMED, those from NHS/HPFS were younger and

85less likely to have obesity, diabetes, dyslipidaemia, and hypertension
at baseline (Table 1).

The mean MEDAS was 8.7 in the PREDIMED at baseline and 10.1
at year-1 (range: 4–14) (Table 1A); the improvement in the score was
due to increased intakes of extra-virgin olive oil (EVOO), fish, nuts,

90and legumes resulting from the dietary interventions (Supplementary
material online, Figure S4). The mean MEDAS was 4.2 in NHS, 4.2 in
NHSII, and 4.5 in HPFS (range: 0–10), lower than that in PREDIMED
partially because two items (olive oil as main culinary fat and sofrito
intake) were not available for MEDAS calculation (Table 1B and

95Supplementary material online, Table S2). In addition, compared with
those in the PREDIMED, participants from NHS/HPFS reported
lower intakes of olive oil, fruit, wine, nuts, fish, and poultry, but higher
intakes of red meat, butter/margarine, and sweets (Supplementary
material online, Figure S4).

100Variation of the plasma metabolome in
response to the Mediterranean diet
Of the 302 named metabolites used in the analyses (Supplementary
material online, Figure S3A), we identified 97 (32.1%) metabolites sig-
nificantly associated with MEDAS at baseline in the PREDIMED

105(FDR < 0.05) (Supplementary material online, Figure S3D). These
metabolites were primarily lipids (n = 82; accounting for 37% of all
assayed lipids), and also included amino acids (n = 9; 21% of assayed
amino acids) and metabolites of other categories (n = 6)
(Supplementary material online, Figure S3B). Results from the

110PREDIMED year-1 data were highly concordant (Supplementary ma-
terial online, Figure S3E). The enrichment of significant associations in
lipid categories was likely due to strong correlations among lipid spe-
cies (Supplementary material online, Figure S5).
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Table 1 Characteristics of the study participants from baseline and year-1 of the PREDIMED study and at time of
blood collection in the NHS, NHS II, and HPFS

(A) Study participants from the PREDIMED trial

Characteristics The PREDIMED-CVD studya The PREDIMED-T2D study

At baseline At year-1 At baseline At year-1

Incident CVD Sub-cohort Incident CVD Sub-cohort N 5 1017 N 5 779

N 5 227 N 5 785 N 5 143 N 5 731

Female, n (%) 91 (40.1) 449 (57.2) 61 (42.7) 416 (56.9) 621 (61.1) 474 (60.8)

Age, years 69.4 (6.5) 67.1 (5.9) 70.3 (6.6) 68.2 (5.9) 66.6 (5.9) 67.6 (5.8)

Body mass index, kg/m2 29.6 (3.8) 29.7 (3.6) 29.8 (4.0) 29.7 (3.7) 30 (3.5) 30 (3.7)

MEDASb 8.4 (1.8) 8.9 (1.8) 10.1 (1.9) 10 (1.9) 8.6 (1.9) 10.1 (1.9)

Smoking status, n (%)

Never 104 (45.8) 490 (62.4) 67 (46.9) 467 (63.9) 607 (59.7) 485 (62.3)

Former 77 (33.9) 198 (25.2) 43 (30.1) 182 (24.9) 228 (22.4) 172 (22.1)

Current 46 (20.3) 97 (12.4) 33 (23.1) 82 (11.2) 182 (17.9) 122 (15.7)

Prevalence of diseases/conditions, n (%)

Hypertension 187 (82.4) 655 (83.4) 69 (48.3) 404 (55.3) 935 (91.9) 503 (64.6)

Dyslipidaemia 132 (58.1) 576 (73.4) 103 (72.0) 469 (64.2) 853 (83.9) 539 (69.2)

Diabetes 146 (64.3) 370 (47.1) 91 (63.6) 342 (46.8) 0 0

Family history of premature CHD 44 (19.4) 198 (25.2) 29 (20.3) 185 (25.3) 268 (26.4) 208 (26.7)

Fasting glucose, mg/dL 126.7 (41.0) 116.1 (32.7) 123.3 (37.2) 114.5 (31.0) 102.5 (16.2) 101.4 (16.7)

LDL cholesterol, mg/dL 130.8 (33.8) 130.5 (33.2) 127.2 (31.4) 128.4 (32.5) 138.3 (33.4) 134.2 (33.8)

HDL cholesterol, mg/dL 49.8 (14.3) 51.2 (12.9) 51 (16.7) 52.8 (13.8) 53 (12.4) 55 (14.1)

Total cholesterol, mg/dL 208.3 (33.8) 207.7 (36.8) 205.7 (35.5) 205.7 (35.8) 217.2 (36.5) 214.4 (37.8)

Triglycerides, mg/dL 147.8 (78) 132.9 (81.6) 146.1 (79.2) 130.3 (73.9) 133.3 (74.9) 131.4 (70.1)

(B) Study participants from the NHS, NHSII, and HPFS

Characteristics NHS (women) NHSII (women) HPFS (men)

Incident CVD Non-case Incident CVD Non-case Incident CVD Non-case

N 5 192 N 5 2447 N 5 23 N 5 3142 N 5 136 N 5 928

Age, years 59.7 (6.1) 55.7 (6.7) 45.9 (4.9) 44.5 (4.5) 68.3 (7.0) 62.8 (8.3)

Body mass index, kg/m2 27.2 (5.6) 26.1 (4.7) 27.1 (6.0) 25.8 (5.8) 25.8 (2.9) 25.6 (3.0)

MEDASb 4.1 (1.7) 4.2 (1.7) 4.1 (1.6) 4.2 (1.7) 4.5 (1.7) 4.5 (1.8)

Smoking status, n (%)

Never 88 (45.8) 1187 (48.5) 9 (39.1) 2113 (67.3) 62 (45.6) 484 (52.2)

Former 75 (39.1) 1003 (41.0) 10 (43.5) 779 (24.8) 65 (47.8) 411 (44.3)

Current 29 (15.1) 257 (10.5) 4 (17.4) 250 (8.0) 9 (6.6) 33 (3.6)

Prevalence of diseases/conditions, n (%)

Hypertension 94 (49.0) 697 (28.5) 2 (8.7) 368 (11.7) 61 (44.9) 261 (28.1)

Dyslipidaemia 93 (48.4) 999 (40.8) 8 (34.8) 801 (25.5) 63 (46.3) 391 (42.1)

Diabetes 14 (7.3) 44 (1.8) 0 41 (1.3) 9 (6.6) 37 (4.0)

Family history of premature CHD 58 (30.2) 551 (22.5) 6 (26.1) 668 (21.3) 28 (20.6) 142 (15.3)

Aspirin use, n (%) 94 (49.0) 1156 (47.2) 4 (17.4) 456 (14.5) 61 (4.9) 349 (37.6)

Postmenopausal, n (%) 160 (83.3) 1688 (69.0) 9 (39.1) 718 (22.9) — —

Postmenopausal HT,c n (%) 50 (31.2) 707 (41.9) 5 (55.6) 504 (70.2) — —

Total calorie, kcal/day 1724 (474) 1771 (515) 1953 (671) 1830 (534) 2096 (671) 2056 (623)

Physical activity, MET-hours/week 15.1 (17.4) 15.5 (24) 18.6 (18.8) 17.9 (21.7) 29.1 (25.6) 33.6 (29.9)

CHD, coronary heart disease; CVD, cardiovascular disease; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MEDAS, Mediterranean Diet Adherence Screener.
aIncident CVD cases and the sub-cohort shared 36 overlapping samples at baseline and 26 at year 1, excluding participants missing data on metabolomics or diet.
bIn PREDIMED, 14 items were used in the calculation of MEDAS and the range of MEDAS was 4–14; in NHS/HPFS, 12 items were used in the calculation of MEDAS and the
range of MEDAS was 0–10.
cAmong post-menopausal women.
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We then applied elastic net regressions on the 302 named metab-

olites in PREDIMED baseline data (training set) to identify a metabolic
signature for Mediterranean diet adherence. The model selected a
combination of 67 metabolites most significantly associated with

5 MEDAS while robust to the effects of collinearity between metabo-
lites (Figure 2 and Supplementary material online, Figure S1). At
PREDIMED year-1 (internal testing set) and NHS/HPFS baseline (ex-
ternal testing set), we found that the metabolic signature was signifi-
cantly correlated with MEDAS (PREDIMED year-1: r = 0.31,

10 P = 3� 10-35; NHS/HPFS: 34–62 metabolites were available for signa-
ture calculation in various sub-studies; overall r = 0.28, P = 4� 10-118)
(Figure 2 and Supplementary material online, Table S1). In the training
set, the unbiased metabolic signature acquired using the leave-one-
out cross-validation approach was significantly correlated with

15 MEDAS with a similar magnitude (r = 0.37, P = 2� 10-62) (Figure 2).
Further stratification analyses suggested that correlations between
MEDAS and the metabolic signature in both PREDIMED and NHS/
HPFS were consistent across categories of study-design characteris-
tics (e.g. sub-studies and case-control status) (Supplementary mater-

20 ial online, Figures S6 and S7). Secondary analysis in PREDIMED
showed a weak, but statistically significant (P = 0.006) positive associ-
ation between 1-year changes in MEDAS with concurrent changes in
the metabolic signature (Supplementary material online, Figure S8).

Metabolites in the signature included 45 lipid species and acylcarni-
25 tines (20% of all assayed lipids), 19 amino acids (an enriched set of

44% of assayed amino acids), 2 vitamins (29% of assayed vitamins/
cofactors), and 1 xenobiotic (Figures 2 and 3 and Supplementary ma-
terial online, Figure S3C). The selected metabolites showed extensive
associations with MEDAS that were highly concordant between

30 PREDIMED and NHS/HPFS. Different MEDAS components were
associated with various sub-sets of selected metabolites, but the
associations appeared to be stronger and most reproducible for
intakes of olive oil, wine, fish/seafood, and sweets (Figure 3 and
Supplementary material online, Figure S9–S12). As a notable example,

35 associations between the 67 metabolites constituting the metabolic
signature and fish/seafood intake were most concordant across data-
sets (PREDIMED baseline vs. year 1, r = 0.78; PREDIMED baseline vs.
NHS/HPFS, r = 0.72); higher fish/seafood intake was significantly and
reproducibly associated with higher levels of highly unsaturated lipid

40 metabolites containing >_1 chain(s) of eicosapentaenoic acid (EPA),
docosahexaenoic acid (DHA), and/or docosapentaenoic acid (DPA)
(Figure 3 and Supplementary material online, Figure S9–S12).

We observed substantial variations in the metabolic signature
among participants reporting the same MEDAS (Figure 2 and

45 Supplementary material online, Figure S1C). Secondary analyses sug-
gested that differences in dietary components explained a small pro-
portion of such variation (Supplementary material online, Figure S13),
suggesting the influences of other factors (Supplementary material
online, Figure S1).

50 Associations with risk of incident
cardiovascular disease events
In multivariable analyses of the PREDIMED study, we observed a sig-
nificant inverse association between baseline MEDAS with incident
CVD [cases n = 227; HR per SD increment in MEDAS =0.77 (95% CI:

55 0.64–0.93)], and a statistically non-significant inverse association

between year-1 MEDAS with risk of subsequent CVD events [cases
n = 143; HR = 0.87 (0.71–1.05)]. The metabolic signatures at baseline
and year 1 were both inversely associated with incident CVD at a
similar magnitude [baseline signature: HR = 0.71 (0.58–0.87); year-1

60signature: HR = 0.72 (0.57–0.92)]; notably, these associations
remained significant after further adjustment for MEDAS [baseline
signature, HR = 0.73 (0.59–0.91); year-1 signature, HR = 0.74 (0.58-
0.94)] or MEDAS components (Table 2 and Supplementary material
online, Table S4). In contrast, the association between MEDAS and

65CVD was 37.2% (95% CI: 13.1–70.1%) mediated by the metabolic sig-
nature (Supplementary material online, Figure S1D) and, after further
adjustment for the metabolic signature, the association was attenu-
ated and became non-significant (Table 2 and Supplementary material
online, Table S4). Further adjustment for blood lipids, biomarkers

70indicating liver/kidney functions, or propensity scores did not change
the results (Supplementary material online, Table S4).

Similar findings were observed in the NHS/HPFS. We documented
351 incident CVD events during up to 22 years of follow-up. Baseline
metabolic signature was significantly associated with CVD risk after

75adjusting for known risk factors and potential confounders [HR =
0.85 (0.76–0.94)] and after further controlling for MEDAS [HR =
0.85 (0.77–0.95)] or MEDAS components. The marginal association
between MEDAS and CVD risk [HR =0.90 (0.81–1.00) in age and
sex-adjusted model and 0.92 (0.82–1.03) in the multivariable model]

80was attenuated after further adjusting for the metabolic signature
[64.5% (95% CI, 1.6–99.5%) mediated by the metabolic signature; HR
after adjustment = 0.97 (0.86–1.09)] (Table 2 and Supplementary ma-
terial online, Table S4 and Figure S1D).

In secondary analyses, we noted significant associations between
85several metabolites constituting the metabolic signature and CVD

risk and the overall association pattern was concordant across
PREDIMED and NHS/HPFS (Figure 3 and Supplementary material on-
line, Figures S9–S12). Of note, metabolites associated with higher
MEDAS (especially, higher intakes of olive oil, wine, and fish/seafood,

90and lower intakes of SSB AQ9and sweets) were more likely to be associ-
ated with a lower CVD risk; this was exemplified by highly unsatur-
ated lipid metabolites, which showed positive associations with
intakes of olive oil, wine, and/or fish/seafood, and a beneficial associ-
ation with incident CVD. In contrast, metabolites associated with

95lower MEDAS were more likely to be associated with higher CVD
risk (e.g. glutamate) (Figure 3). In sensitivity analyses, the association
between the metabolic signature and CVD did not change after
excluding any individual metabolite, or unsaturated lipids containing
EPA/DHA/DPA, from the signature (Supplementary material online,

100Table S5), suggesting that such association represented cumulative
effects from many metabolites.

Associations with cardiovascular traits/
risk factors
In multivariable analyses, MEDAS and the metabolic signature

105showed a similar association pattern with cardiovascular traits/risk
factors, including an inverse association with BMI, waist circumfer-
ence, and current smoking, and a positive association with physical
activity. Compared with MEDAS, the metabolic signature showed
stronger associations with metabolic disease/traits, including an in-

110verse association with prevalent diabetes, triglycerides, and total to
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Figure 3 Associations of the 67 metabolites constituting the metabolic signature with MEDAS components, total MEDAS score, and subsequent
cardiovascular disease risk. Data were based on measurements at PREDIMED baseline (replications were provided in the supplements). Presented
from left to right are the metabolites’ coefficients (weights) in the signature, and associations with each food component, MEDAS, and subsequent
cardiovascular disease risk. Coefficients for associations with food items and MEDAS indicate the SD changes in metabolites per dietary score incre-
ment. Coefficients for cardiovascular disease risk indicate ln (hazard ratio) of cardiovascular disease risk per SD increment in metabolites. Colours de-
note the association directions (red-positive and blue-inverse) and magnitudes (the darker the colour, the stronger the magnitude); asterisks
represent association significance (*P < 0.05 and **P < Bonferroni corrected 0.05; for associations with total MEDAS score and cardiovascular dis-
ease risk, we Bonferroni corrected for 67 metabolites; for associations with each of the food items, we Bonferroni corrected for 67 metabolites �
14 food items). CVD, cardiovascular disease; MEDAS, the Mediterranean Diet Adherence Screener.
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.
high-density lipoprotein (HDL) cholesterol ratio, and a positive asso-
ciation with HDL cholesterol (Supplementary material online, Figure
S14).

The genetic determinants of the

5 metabolic signature and cardiovascular
disease risk
As secondary analyses, we included genetic analyses to facilitate the
interpretation of the identified metabolic signature. The estimated
genetic heritability of the metabolic signature was 12% (h2 = 0.12,

10 SE = 0.26). We identified three loci associated with the metabolic sig-
nature after adjusting for MEDAS (FADS1-3 and DAOA, P < 5� 10-8;
LINC01187, P = 2� 10-7) and two additional loci influencing the sig-
nature through interactions with MEDAS (ABCC1-6 and
LOC101928516, Pinteraction < 5� 10-8) (Supplementary material on-

15 line, Table S6). Mendelian randomization analyses showed that the
genetic component of the signature was inversely associated with
risk of CHD (OR per SD increment in the genetically inferred meta-
bolic signature = 0.92, 95% CI, 0.91–0.94, P < 0.001), total stroke
(OR = 0.91, 95% CI, 0.88–0.94, P < 0.001), and ischaemic stroke

20 (OR = 0.89, 95% CI, 0.86–0.92, P < 0.001) (Figure 4). Several risk fac-
tors (including blood lipids, systolic blood pressure, and diabetes)
showed weak albeit statistically significant mediating effects in the MR
analyses (Supplementary material online, Figure S15).

Discussion

25Leveraging data from a large intervention trial and three prospective
cohorts, this study is the first to identify a metabolic signature that
measures adherence to the Mediterranean diet and importantly, pre-
dicts future CVD risk independently of known CVD risk factors in
both Spanish and US populations. Given its ability to identify CVD

30risk independent of self-reported dietary measures, the metabolic sig-
nature holds promise in complementing traditional dietary assess-
ments, stratifying individuals with different dietary response and
disease risk, and potentially facilitating personalized nutrition
interventions.

35Previous studies have identified many individual metabolites associ-
ated with some dietary patterns, and intakes of foods such as fish,
nuts, and vegetables,12,13,15–17,42 indicating that metabolites in biospe-
cimens may serve as biomarkers for assessing diet. In our study, the
67 metabolites that comprise the metabolic signature showed repro-

40ducible associations with MEDAS and its food components. Given
that the Mediterranean diet is high in unsaturated fats, it is not sur-
prising that a large proportion of these metabolites are involved in
polyunsaturated fatty acid and lipid metabolic pathways, a finding that
is also consistent with prior metabolomics studies.16 The positive

45associations between fish/seafood intake and lipid species containing
long-chain n-3 fatty acids are consistent with the dietary source of
these fatty acids and prior metabolomic studies of fish intake.16,42

........................................................ ...........................................................

....................................................................................................................................................................................................................

Table 2 Associations of MEDAS and the metabolic signature with CVD risk in the PREDIMED study and the NHS/
HPFS

Analysis model MEDAS Metabolic signature

HR (95% CI)a P HR (95% CI)a P

PREDIMED baseline MEDAS/signature and 227 incident CVD eventsb

Age, sex-adjusted Model 0.77 (0.65–0.93) 0.006 0.69 (0.57–0.84) <0.001

Multivariable Model 0.77 (0.64–0.93) 0.008 0.71 (0.58–0.87) <0.001

MV þ mutual adjustmentc 0.86 (0.70–1.07) 0.17 0.73 (0.59–0.91) 0.004

PREDIMED year 1 MEDAS/signature and 143 subsequent CVD eventsd

Age, sex-adjusted Model 0.84 (0.70–1.01) 0.07 0.68 (0.55–0.84) <0.001

Multivariable Model 0.87 (0.71–1.05) 0.15 0.72 (0.57–0.92) 0.008

MV þ mutual adjustmentc 0.95 (0.78–1.15) 0.59 0.74 (0.58–0.94) 0.01

NHS/HPFS baseline MEDAS/signature and 351 incident CVD eventse

Age, sex-adjusted Model 0.90 (0.81–1.00) 0.05 0.81 (0.74–0.90) <0.001

Multivariable Model 0.92 (0.82–1.03) 0.13 0.85 (0.76–0.94) 0.001

MV þ mutual adjustmentc 0.97 (0.86–1.09) 0.56 0.85 (0.77–0.95) 0.004

BMI, body mass index; CHD, coronary heart disease; CVD, cardiovascular disease; MEDAS, Mediterranean Diet Adherence Screener.
aHazard ratio (HR) and 95% confidence interval (CI) of CVD risk per standard deviation increment in MEDAS or the metabolic signature.
bMEDAS, metabolic signature, and covariates were assessed at baseline, and outcome was incident CVD events occurred from baseline through end of follow-up. The basic
model was stratified by study centres and intervention arms and adjusted for age and sex. The multivariable (MV) model further adjusted for BMI, smoking status, diabetes, dysli-
pidaemia, hypertension, and family history of premature CHD.
cWe included both MEDAS and the metabolic signature of MEDAS simultaneously in the MV model to examine association independence.
dMEDAS, metabolic signature, and covariates were assessed at year 1, and outcome was the incident CVD events occurred after year-1 visit through end of follow-up. The ana-
lytic models were the same as in (b) except not stratifying by intervention arms because of high co-linearity with MEDAS.
eThe basic model was stratified by study cohorts (NHS/NHSII: women; HPFS: men), original sub-studies, and the case-control status in the original sub-study, and was adjusted
for age in years. MV Model further adjusted for fasting status and aspirin use at blood draw, BMI, smoking status, physical activity, diabetes, dyslipidaemia, hypertension, and fam-
ily history of premature CHD.
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Extra-virgin olive oil is rich in monounsaturated fat, and both EVOO
and red/white wine are high in anti-oxidative polyphenols.43

Concordantly in our study, intakes of EVOO and wine were positive-
ly associated with unsaturated lipids, especially plasmalogen phospho-

5 lipids that have anti-oxidative properties and are protective for
CVD.19 It is worth noting that, in line with the beneficial effect of fish/
seafood, olive oil, and wine in CVD prevention,44,45 metabolites asso-
ciated with higher intakes of these dietary factors were more likely to
be associated with a lower CVD risk, indicating potential pathways

10 through which these dietary factors are associated with CVD out-
comes. Our findings suggested that greater adherence to the
Mediterranean diet may lead to profound changes in the metabolome
that are associated with favourable cardiometabolic health.

The plasma metabolome reflects the overall metabolic homeosta-
15 sis resulting from the interactive effects of all metabolism-influencing

factors, including diet,13 genetic variabilities,11 the microbiome,7 and
health status.46 In our study, self-reported MEDAS was a combin-
ation of true dietary intakes and reporting errors. The metabolome,
while can be changed by diet, is expected to be independent of

20 reporting errors. By regressing MEDAS on metabolites
(Supplementary material online, Figure S1B formula #3), the resulting
metabolic signature captured cumulative changes in the metabolome
that are correlated with Mediterranean dietary adherence, incorpo-
rated individual metabolic variations from other factors that influence

25 dietary metabolism, while also minimized measurement errors which
are inherent to self-reported dietary assessments (Supplementary
material online, Figure S1A). Consistent with this notion, besides a
moderate but robust positive correlation between the metabolic sig-
nature and MEDAS, we also observed substantial variation in the

30 metabolic signature among participants with the same MEDAS scores
(Supplementary material online, Figure S1C). Some of the variation
could be attributed to differences in dietary components and
between-person variabilities in responses to diet as a result of genetic
variations. Indeed, our genetic analyses found that the metabolic sig-

35 nature was significantly influenced by genetic loci involved in metabol-
ism of fatty acids (e.g. the fatty acid desaturase gene cluster FADS1-
3)47 and amino acids (e.g. D-amino acid oxidase activator DAOA). The

metabolic signature was also associated with several risk factors
known to influence dietary metabolism including physical activity,

40smoking, and metabolic conditions. Importantly, the metabolic signa-
ture was able to identify individuals at different CVD risk among par-
ticipants with similar CVD risk factors and reported the same
MEDAS and dietary components in both PREDIMED and NHS/
HPFS. Our MR and mediation analyses suggested the metabolic signa-

45ture as a potential causal mediator on the path from the
Mediterranean diet to risk of CHD and stroke (Supplementary ma-
terial online, Figure S1D). Taken together, the metabolic signature
may represent an integrated picture of the metabolic homeostasis
resulting from adherence to the Mediterranean diet and individual

50metabolic responses to diet.
In the PREDIMED, baseline MEDAS was significantly associated

with CVD risk whereas the association for year-1 MEDAS was mar-
ginal. This may be due to a reduced sample size at year 1, and that
short-term dietary changes immediately after the intervention were

55not representative of dietary adherence during the entire interven-
tion. As expected, we found, in the whole PREDIMED study, a signifi-
cant association for year-1 MEDAS (with a similar HR as in our study)
and a stronger association for cumulative average of MEDAS since
year 1 with CVD risk (Supplementary material online, Table S7).

60Cotinine, a metabolite of nicotine, was selected into the metabolic
signature by elastic net regression possibly due to the strong correl-
ation between lower MEDAS and smoking. Still, the correlations be-
tween MEDAS and metabolic signature were consistent across
smoking status categories. Furthermore, the association between the

65metabolic signature with CVD risk did not change after excluding
cotinine from the signature (Supplementary material online, Figure
S16).

Although previous studies have identified many diet-associated
metabolites,12,13,15–17,42 our study is the first to identify a metabolic

70signature for the evaluation of adherence/metabolic response to the
Mediterranean diet and examined its association with long-term
CVD risk. Our findings were reproducible among Spanish and US
participants with different food environments and dietary habits. The
signature was derived by machine-learning models using well-

75characterized metabolites and is robust to a few missing predictor
metabolites. This allows possible applications by future studies to
measure adherence/metabolic response to the Mediterranean diet in
other cohort and intervention studies. The well-characterized data in
PREDIMED and NHS/HPFS allowed us to control for confounders/

80risk factors, and to evaluate genetic determinants of the metabolic
signature and the potential causal association between the signature
and CVD risk, highlighting the value of the metabolic signature in eval-
uating diet and disease risks.

Several limitations warrant discussion. First, the metabolic signa-
85ture was developed based on 302 named metabolites. While the

interplay between metabolites may be non-linear, elastic net regres-
sion constructed the signature using a linear combination of metabo-
lites. Although the metabolic signature performed robustly, our
approach might benefit from the inclusion of additional metabolites,

90and advanced machine-learning methods that also consider non-
linear relations/interactions between metabolites. Second, the
Mediterranean diet shares many foods/nutrients with other healthy
eating patterns and the metabolic signature was associated with other

Figure 4 Mendelian Randomization analyses of the metabolic sig-
nature with risk of coronary heart disease and stroke. In mode-
based estimate of Hartwig (MBE) Mendelian randomization analy-
ses, 58 genetic variants associated with the metabolic signature at
P < 1� 10-6 were used as the instrument variable. CHD, coronary
heart disease; CVD, cardiovascular disease; MR, Mendelian random-
ization; OR, odds ratio; CI, confidence interval.

10 J. Li et al.
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..factors influencing dietary metabolism; this may limit the specificity of
the signature in assessing the Mediterranean diet. Future studies are
warranted to examine potential metabolic differences across differ-
ent healthy eating patterns. Third, due to the observational nature,

5 our study was unable to confirm causality; however, we used a pro-
spective cohort design and applied MR analyses, thus reducing con-
cerns of reverse causation. Finally, although we evaluated the cross-
population reproducibility of the signature, it should be validated in
other independent populations, and examined in associations with

10 other chronic diseases.
In summary, based on reproducible findings in Spanish and three

US cohorts, the present study identified a metabolic signature that
measures adherence and metabolic response to the Mediterranean
diet, and predicts future CVD risk. Further examinations of the meta-

15 bolic signature and biological pathways of constituting metabolites
may improve our understanding of biological mechanisms through
which diet impacts health. Metabolomics profiling holds the promise
for an objective and more comprehensive evaluation of adherence
and metabolic response to diet, stratifying individuals based on diet-

20 ary response and disease risk, and facilitating more effective and indi-
vidualized approaches for dietary interventions.

Supplementary material

Supplementary material is available at European Heart Journal online.AQ10
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L, Mu~noz MA, Pintó X, Lamuela-Raventós RM, Basora J, Buil-Cosiales P, Sorlı́
JV, Ruiz-Gutiérrez V, Martı́nez JA, Salas-Salvadó J. Olive oil intake and risk of
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