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ABSTRACT
Background: The quality of carbohydrate consumed, assessed by the glycemic index (GI), glycemic load (GL),

or carbohydrate quality index (CQI), affects the postprandial glycemic and insulinemic responses, which have been

implicated in the etiology of several chronic diseases. However, it is unclear whether plasma metabolites involved in

different biological pathways could provide functional insights into the role of carbohydrate quality indices in health.

Objectives: We aimed to identify plasma metabolomic profiles associated with dietary GI, GL, and CQI.

Methods: The present study is a cross-sectional analysis of 1833 participants with overweight/obesity (mean age = 67

y) from 2 case-cohort studies nested within the PREDIMED (Prevención con Dieta Mediterránea) trial. Data extracted

from validated FFQs were used to estimate the GI, GL, and CQI. Plasma concentrations of 385 metabolites were

profiled with LC coupled to MS and associations of these metabolites with those indices were assessed with elastic

net regression analyses.

Results: A total of 58, 18, and 57 metabolites were selected for GI, GL, and CQI, respectively. Choline, cotinine,

γ -butyrobetaine, and 36:3 phosphatidylserine plasmalogen were positively associated with GI and GL, whereas they

were negatively associated with CQI. Fructose-glucose-galactose was negatively and positively associated with GI/GL

and CQI, respectively. Consistent associations of 21 metabolites with both GI and CQI were found but in opposite

directions. Negative associations of kynurenic acid, 22:1 sphingomyelin, and 38:6 phosphatidylethanolamine, as well as

positive associations of 32:1 phosphatidylcholine with GI and GL were also observed. Pearson correlation coefficients

between GI, GL, and CQI and the metabolomic profiles were 0.30, 0.22, and 0.27, respectively.

Conclusions: The GI, GL, and CQI were associated with specific metabolomic profiles in a Mediterranean population

at high cardiovascular disease risk. Our findings may help in understanding the role of dietary carbohydrate indices

in the development of cardiometabolic disorders. This trial was registered at isrctn.com as ISRCTN35739639. J Nutr

2020;00:1–9.
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Introduction

Sustaining a small postprandial increase in blood glucose and
consequently insulin concentrations (1) may play a role in the
prevention or management of several cardiometabolic disorders
(2, 3), including obesity, type 2 diabetes (T2D), cardiovascular
diseases (CVDs), and other chronic conditions such as cancer
(3). Because carbohydrate is the main dietary component
affecting postprandial glycemia (4), 2 indices, the glycemic index
(GI) (5) and glycemic load (GL) (6), were introduced to quantify
the glycemic response to carbohydrates in different foods and by
food serving, respectively. According to previous meta-analyses
of prospective studies, diets with high GI and/or high GL have
been associated with increased risk of T2D, coronary heart
disease, and some types of cancer (3, 7, 8). More recently, the
carbohydrate quality index (CQI) was proposed as an index of
dietary carbohydrate quality that includes the GI and intakes of
total fiber, whole grains, and liquid or solid carbohydrates. A
higher CQI has been associated with a lower risk of CVD (9)
and lower risks of obesity (10) and hypertension (11).

Although these dietary carbohydrate indices have been
related to health outcomes, the underlying mechanisms are
not completely understood. The postprandial glycemic and
insulinemic response may contribute to disease risk through
modulation of several metabolic pathways (12). Consequently,
a comprehensive metabolite profiling may provide a deeper
understanding of the metabolic response to these indices. Prior
studies have identified some circulating metabolites modulated
after dietary interventions with differential levels of GI (13,
14) or GL (15, 16). However, to date, limited metabolomic
analysis has been conducted using combinations of different
metabolomic platforms to cover a wide range of metabolites
and examine their association with dietary GI and GL, and
none to our knowledge has assessed this issue in relation to
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the CQI. Identifying metabolites involved in different biological
pathways related to these indices might provide new functional
insight into their role in health.

Therefore, we used a multiplatform metabolomics approach
to identify plasma metabolomic profiles associated with the
dietary GI, GL, and CQI in the PREDIMED (Prevención con
Dieta Mediterránea) study.

Methods
Study design
This study is a cross-sectional analysis of baseline data from 2 nested
case-cohort studies on CVD (17) and T2D (18) within the PREDIMED
study (ISRCTN35739639). The PREDIMED study is a multicenter trial
examining the efficacy of 2 Mediterranean diet interventions over a
control diet, for primary prevention of CVD (19). A detailed description
of the PREDIMED trial can be found elsewhere (19, 20). The protocol of
the PREDIMED trial was approved by the Research Ethics Committees
of all participating centers.

Subject selection
For the present study, participants with available metabolomics data
from 2 case-cohort studies (17, 18) were selected. Out of 1882
who completed a validated semiquantitative 137-item FFQ, 1871
participants were included (21). Participants (n = 34) who had extreme
daily energy intakes (<500 or >3500 kcal/d for women and <800 or
>4000 kcal/d for men) were excluded as well as those (n = 4) with
≥20% missing values in metabolites, leaving 1833 subjects for further
analyses (Supplemental Figure 1).

Calculation of nutrient and energy intakes and dietary
GI, GL, and CQI
Nutrient and energy intakes were calculated using Spanish food
composition tables (22). The validity and reproducibility of the FFQ
for the measurements of the high-carbohydrate foods within it have
been previously reported (21). The intraclass correlation coefficient
between vegetables, potatoes, fruits, cereals, and pastries/cakes/sweets
and repeated food records was 0.89, 0.75, 0.76, 0.72, and 0.84,
respectively, whereas it was 0.83 for carbohydrates and 0.86 for fiber.
GI values for each food were extracted from international GI and GL
values (23) with glucose as the reference. For foods that were not in the
tables, the mean was calculated for similar foods that were present in the
FFQ. The total GL of each diet was determined by multiplying the total
carbohydrates of a specified serving size of the food, the total number
of food portions consumed per day, and its specific GI and then dividing
their sum by 100. GI was calculated by dividing GL by total available
carbohydrate intake and multiplying the result by 100 (6, 24). The CQI
was defined comprising the following 4 criteria: dietary fiber intake (g/d;
positively weighted), GI (negatively weighted), ratio of whole grains to
total grains (positively weighted), and ratio of solid carbohydrate to
solid carbohydrate + liquid carbohydrate (positively weighted) (25). For
each of these 4 components, we categorized participants into quintiles
and assigned a value (ranging from 1 to 5) according to each quintile
(25). Finally, we constructed the CQI by summing all values. All criteria
had the same weighting, and the CQI ranged from 4 to 20. After
CQI estimation, 1829 subjects were available for analyses because the
consumption of refined grains was 0 in 4 participants (Supplemental
Figure 1).

Metabolomics
Fasting (for ≥8 h) plasma EDTA samples were collected from subjects
and stored at −80◦C. Pairs of samples for each participant were
randomly ordered and analyzed using 2 LC–tandem MS methods to
measure polar metabolites and lipids as described previously (26–
28). Briefly, amino acids and other polar metabolites were profiled
with a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.) coupled to a
Q Exactive mass spectrometer (ThermoFisher Scientific). Metabolites
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were extracted from plasma (10 μL) using 90 μL 74.9:24.9:0.2 (by
vol) acetonitrile/methanol/formic acid containing stable isotope–labeled
internal standards [valine-d8 (Sigma-Aldrich) and phenylalanine-d8
(Cambridge Isotope Laboratories)]. The samples were centrifuged
(10 min; 9000 × g; 4◦C) and the supernatants were injected directly
onto a 150 × 2-mm, 3-μm Atlantis HILIC column (Waters). The
column was eluted isocratically at a flow rate of 250 μL/min with
5% mobile phase A (10 mmol ammonium formate/L and 0.1% formic
acid in water) for 0.5 min followed by a linear gradient to 40%
mobile phase B (acetonitrile with 0.1% formic acid) over 10 min. MS
analyses were carried out using electrospray ionization in the positive-
ion mode and full-scan spectra were acquired over 70–800 m/z. Lipids
were profiled using a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.)
coupled to an Exactive Plus orbitrap mass spectrometer (Thermo Fisher
Scientific). Lipids were extracted from plasma (10 μL) using 190 μL
isopropanol containing 1,2-didodecanoyl-sn-glycero-3-phosphocholine
(Avanti Polar Lipids) as an internal standard. Lipid extracts (2 μL)
were injected onto a 100 × 2.1-mm, 1.7-μm ACQUITY BEH C8
column (Waters). The column was eluted isocratically with 80% mobile
phase A (95:5:0.1 10 mM ammonium acetate/methanol/formic acid, by
vol) for 1 min followed by a linear gradient to 80% mobile phase B
(99.9:0.1 methanol/formic acid, vol:vol) over 2 min, a linear gradient
to 100% mobile phase B over 7 min, then 3 min at 100% mobile
phase B. MS analyses were carried out using electrospray ionization
in the positive-ion mode using full-scan analysis over 200–1100 m/z.
Raw data were processed using Trace Finder versions 3.1 and 3.3
(Thermo Fisher Scientific) and Progenesis QI (Nonlinear Dynamics).
Polar metabolite identities were confirmed using authentic reference
standards and lipids were identified by head group and total acyl
carbon number and total acyl double-bond content. In order to mitigate
potential batch effects and temporal drift in LC-MS sensitivity over
the analysis period, data were standardized to an external reference
sample. To enable assessment of data quality and to facilitate data
standardization across the analytical queue and sample batches, pairs
of pooled plasma reference samples were analyzed at intervals of 20
study samples. One sample from each pair of pooled references served
as a passive QC sample to evaluate the analytical reproducibility for
measurement of each metabolite, whereas the other pooled sample was
used to standardize using a “nearest neighbor” approach. Standardized
values were calculated using the ratio of the value in each sample over
the nearest pooled plasma reference multiplied by the median value
measured across the pooled references. Plasma concentrations of 398
metabolites were analyzed. Missing values are those determinations that
were below the limit of detection. From the 398 metabolites analyzed in
the present study, 13 metabolites were removed owing to high numbers
of missing values (i.e., >20%), leaving 385 metabolites for further
analysis (Supplemental Table 1).

Assessment of other variables
Information about lifestyle variables, smoking status, medical history,
and medication use was collected through a questionnaire. Physical
activity was assessed using a validated Spanish version of the Minnesota
Leisure Time Physical Activity Questionnaire (29). Participants were
considered to have T2D, dyslipidemia, or hypertension if they had previ-
ously been diagnosed and/or they were being treated with antidiabetic,
cholesterol-lowering, or antihypertensive agents, respectively. BMI was
calculated (in kg/m2). Participants’ triacylglycerol and total and HDL-
cholesterol concentrations were measured by using fasting plasma.

Statistical analyses
Baseline characteristics of study participants were expressed as
means ± SDs for quantitative traits and percentages for categorical
variables. Missing values of individual metabolites were imputed (in
those metabolites with <20% values missing) using the random forest
imputation approach (“missForest” function from the “randomForest”
R package). The concentrations of metabolites were normalized and
scaled to multiples of 1 SD with the rank-based inverse normal
transformation. Owing to the high dimensionality and collinear nature
of the data, linear regression with elastic net penalty was implemented in

the “glmnet” R package (α = 0.5) to build a multimetabolite model for
GI, GL, or CQI. We performed 10-fold cross-validation (CV) to find the
optimal value of the tuning parameter that resulted in a mean squared
error within 1 SD of the minimum (30). The performance of the model
was examined based on parameters of lambda.min. The multimetabolite
model was computed as the weighted sum of the selected metabolites
with weights equal to regression coefficients from the model.

In the training set, we applied a 10-fold CV approach to obtain the
performance of the model without overfitting: we split the data into a
90% set and 10% set. Within the 90% set, we used the same elastic net
procedure we used to build the model. Another 10-fold CV was used to
tune the model parameters. Then, we used the other 10% set to evaluate
the model fit at the previous step. This procedure ensures that the other
10% set is completely separated from the model-building procedure, so
that the performance estimated in this step is unbiased. We then repeated
all these steps 10 times and averaged their performance in the 10%
set. Because each of them was an unbiased estimate of performance,
the average was also unbiased. Pearson correlations were calculated
to evaluate the performance of the multimetabolite model in assessing
GI, GL, or CQI. For reproducibility purposes, regression coefficients
were reported using 9–10 iterations of the 10-CV elastic regression
approach in the whole data set. To address potential sources of reverse
causation bias in relation to the association between metabolites and
the 3 dietary carbohydrate indices, we conducted a sensitivity analysis
by omitting individuals with prevalent T2D (31). To test the robustness
of the findings we conducted 2 sensitivity analyses: 1) using an elastic
net logistic regression and using extreme tertiles (tertile 3 compared
with tertile 1) of the carbohydrate quality indices instead of treating
them as continuous variables; and 2) adding covariates in the elastic
net regression model such as age, sex, BMI, smoking status, alcohol,
physical activity, coffee, or dietary factors not related to carbohydrate
quality (i.e., dairy, meat, eggs, olive oil) or blood lipids, or all the
aforementioned covariates together. All analyses were performed using
R statistical package 3.4.3 (www.r-project.org) (R Development Core
Team, 2012).

Results

Table 1 summarizes general characteristics by the GI/GL and
CQI data sets used for analyses including 1833 participants.
The mean age of participants at baseline was 67.2 y and the
mean BMI was 29.9 in the GI/GL data set and 29.8 in the CQI
data set. The mean GI, GL, and CQI was 47.4, 114.9, and 6.4,
respectively. Pearson correlation analyses revealed that GI was
moderately correlated with GL (r = 0.55) and CQI (r = −0.42),
whereas CQI was weakly correlated with GL (r = −0.12).

Plasma metabolites associated with GI, GL, and CQI

Of the 385 metabolites used in the analyses, the elastic net
regression model selected 58, 18, and 57 metabolites for GI,
GL, and CQI, respectively, while remaining robust to the effects
of collinearity between metabolites (Figures 1–3). The selected
metabolites shown in the respective Figures 1–3 were ranked
from the highest to the lowest elastic net positive and negative
regression coefficients.

Metabolomic profile of GI

Twenty-nine metabolites were positively associated
with GI: 32:1 phosphatidylcholine (PC), metronidazole,
36:4 PC, 5-acetylamino-6-amino-3-methyluracil (AAMU),
indoxylsulfate, γ -butyrobetaine, betaine, cotinine,
choline, 24:1 ceramide d18:1, piperine, uric acid, 2
plasmalogens [36:3 phosphatidylserine (PS), 36:1 PS],
N1-acetylspermidine, and proline were among those
metabolites with high regression coefficients. Among the
29 metabolites negatively associated with GI, the highest
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FIGURE 1 Coefficients for the 58 metabolites selected 9–10 times in the 10 times iterated 10-fold cross-validation of the elastic regression
procedure (using lambda.min) using the whole data set of subjects (n = 1833) and associated with glycemic index (continuous). Metabolites
with negative coefficients (m = 29) are plotted in the left part, whereas those with positive coefficients (m = 29) are shown in the
right part. AAMU, 5-acetylamino-6-amino-3-methyluracil; CE, ceramide; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin.

regression coefficients were found for fructose-glucose-
galactose followed by N-acetylornithine, sphingomyelins
(SMs) (16:1, 14:0), 16:0 lysophosphatidylethanolamine
(LPE), phosphatidylethanolamines (PEs) (38:2, 32:0),
linoleoylethanolamide, 4-hydroxyhippurate, lactate, N6-
acetyllysine, sorbitol, proline betaine, lysine, C4-OH carnitine,
and sphingosine. Supplemental Figure 2 shows the 39
metabolites selected for GI after excluding participants with
T2D.

Metabolomic profile of GL

Out of the 18 metabolites associated with GL, 9 had positive
and 9 negative regression coefficients. The 9 metabolites with
positive coefficients were 32:1 PC, cotinine, C26 carnitine,
methionine, 36:3 PS plasmalogen, choline, dimethylglycine,
γ -butyrobetaine, and 16:1 lysophosphatidylcholine (LPC).
The highest negative regression coefficient was found for
fructose-glucose-galactose followed by γ -aminobutyric acid,
SMs (18:1, 22:1, 18:2), 38:6 PE, 58:10 triacylglycerol (TAG),
succinate, and kynurenic acid. After excluding T2D prevalent
cases, 6 metabolites were selected by elastic net regression
(Supplemental Figure 3).

Metabolomic profile of CQI

Twenty-nine metabolites were positively associated with CQI,
whereas 28 were negatively associated. The highest positive
regression coefficient was observed for lysine followed by uri-
dine, indole-3-propionate, linoleoylethanolamide, 4-pyridoxate,
hypoxanthine, proline betaine, 42:11 PE plasmalogen, 20:4 car-
nitine, N-acetylornithine, fructose-glucose-galactose, 40:10 PC,
51:3 TAG, 38:2 PE, 36:3 PE, hippurate, acetylcholine, and

34:3 PC plasmalogen. High negative regression coefficients
were obtained for 24:1 ceramide d18:1, γ -butyrobetaine,
phenylacetylglutamine, caffeine, 12:1 carnitine, 54:1 TAG, N1-
acetylspermidine, 36:5 PC plasmalogen B, uric acid, arginine,
36:3 PS plasmalogen, phosphocreatine, β-alanine, 36:4 PC
plasmalogen, choline, and 58:6 TAG. Fifty metabolites were
associated with CQI after the exclusion of participants with
T2D (Supplemental Figure 4).

Pearson correlations between metabolomic profiles
and the 3 indices

In the training set, the unbiased metabolomic profiles acquired
using the 10-fold CV approach were significantly correlated
with GI (r = 0.30), GL (r = 0.22), and CQI (r = 0.27)
(Table 2).

Overlapping metabolites among the 3 indices

Consistent associations between some metabolites (choline,
cotinine, fructose-glucose-galactose, γ -butyrobetaine, and 36:3
PS plasmalogen) and all 3 indices were observed (Supple-
mental Table 2). 4-Hydroxyhippurate, acetylamino-6-amino-3-
methyluracil, caffeine, proline betaine, uric acid, uridine, in-
doxylsulfate, linoleoylethanolamide, lysine, N-acetylornithine,
N1-acetylspermidine, piperine, sorbitol, urocanic acid, 12:1
carnitine, and lipid species including 14:0 SM, 16:0 LPE, 24:1
ceramide d18:1, 36:1 PS plasmalogen, and PE (36:3, 38:2)
were associated with both GI and CQI (Supplemental Table 3).
Finally, associations of kynurenic acid, 22:1 SM, 32:1 PC, and
38:6 PE with GI and GL were found (Supplemental Table 3).

The sensitivity analysis using extreme tertiles of GI, GL, and
CQI in the elastic net logistic regression showed comparable
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FIGURE 2 Coefficients for the 18 metabolites selected 9–10 times in the 10 times iterated 10-fold cross-validation of the elastic regression
procedure (using lambda.min) using the whole data set of subjects (n = 1833) and associated with glycemic load (continuous). Metabolites
with negative coefficients (m = 9) are plotted in the left part, whereas those with positive coefficients (m = 9) are shown in the right part.
GABA, γ -aminobutyric acid; LPC, lysophosphatidylcholine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; SM,
sphingomyelin; TAG, triacylglycerol.

results in terms of the metabolites selected (data not shown).
Analyses adjusting for potential confounders also yielded
consistent results for the 3 carbohydrate quality indices.

Discussion

Using baseline data from 2 nested case-cohort studies within the
PREDIMED study and performing a comprehensive metabolite
profiling, we identified several metabolites that were associated
with dietary GI, GL, and CQI.

Previous dietary intervention studies have identified certain
metabolites modulated by their GI or GL content. In the
GLYNDIET, a 6-mo randomized, parallel, controlled, clinical
trial conducted among 102 overweight/obese adults with
available metabolites, the low-GI diet intervention was associ-
ated with increased serine concentrations, and with decreased
concentrations of leucine, valine, and several lipid species
including 2 SMs, 2 LPCs, and 6 PCs as compared with the high-
GI diet (13). In our study, also some amino acids (lysine, proline)
and lipid species (SMs, PCs, PEs, LPE) were associated with the
GI. Furthermore, a previous randomized, controlled, crossover
feeding trial of two 28-d diet periods of high- and low-GL diets
found significantly higher plasma kynurenic acid concentrations
during the low-GL diet period (16), which is in the same
direction as the association observed between this metabolite
and GL in our study. Recently, the same group evaluated the
effects on metabolic profiles of a low-GL compared with a
high-GL diet in a larger sample and found 18 metabolites
involved in inflammation and energy metabolism pathways that
were significantly different between diets (15). Another 28-d
crossover design study with 21 obese adults identified a cluster
of 152 metabolites that discriminated 1 diet from the other 2
(low-fat, low-GI, or very-low carbohydrate diet) (14). Cytosine,
hippurate, and pipecolic acid differentiated the low-GI diet from

the other 2 diets (14), these metabolites also being associated
with GI in our study. On the other hand, no previous study
has examined the association of metabolites with dietary CQI
and we identified for the first time, to our knowledge, a related
metabolic profile.

The majority of the metabolites identified by elastic net
regression for the 3 dietary carbohydrate indices are involved
in several metabolic pathways but some of them may originate
from food and food additives, be formed through microbial
activity in the gastrointestinal tract, or be produced endoge-
nously in response to postprandial glycemia and insulinemia.
Choline was positively associated with dietary GI and GL,
negatively associated with CQI, and total choline can be found
in beef/chicken liver, eggs, wheat germ, bacon, and soybeans
(32); moreover, elevated circulating concentrations have been
associated with components of metabolic syndrome (33) and
CVD (33–35). Notably, its downstream metabolite, betaine,
which is also found in wheat bran and wheat germ (32),
was associated with increased GI and elevated plasma betaine
concentrations have been associated with CVD outcomes (34,
36). Its derivative dimethylglycine, which has been associated
with incident acute myocardial infarction (37), was associated
with increased GL in our study. γ -Butyrobetaine, which is
produced as a gut microbial intermediate in the metabolism of
l-carnitine to trimethylamine and reported to exert atherogenic
effects on mice (38), was also positively associated with GI
and GL and negatively with CQI, supporting the relation
between dietary carbohydrate indices and cardiometabolic
diseases. Hippurate, another gut microbial metabolite of
polyphenol metabolism and associated with the consumption
of polyphenol-rich foods and beverages (39), was associated
with increased CQI. However, the hippurate derivative, 4-
hydroxyhippuric acid, was negatively associated with GI and
positively with CQI, and high concentrations in plasma may
indicate an increased consumption of polyphenol-rich red wine
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FIGURE 3 Coefficients for the 57 metabolites selected 9–10 times in the 10 times iterated 10-fold-cross validation of the elastic regression
procedure (using lambda.min) using the whole data set of subjects (n = 1829) and associated with carbohydrate quality index (continuous).
Metabolites with negative coefficients (m = 28) are plotted in the left part, whereas those with positive coefficients (m = 29) are shown in
the right part. AAMU, 5-acetylamino-6-amino-3-methyluracil; CE, ceramide; DAG, diacylglycerol; DMGV, dimethylguanidino valeric acid; LPC,
lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine;
SM, sphingomyelin; TAG, triacylglycerol.

and red grape juice (40). Kynurenic acid, which exerts anti-
inflammatory effects (15), was found to be inversely associated
with GI and GL. On the other hand, uric acid (a marker of
oxidative stress) was associated with increased GI and decreased
CQI. Epidemiological evidence suggests that high uric acid
concentrations are associated with circulating inflammatory
markers (41) and increased risk of cardiometabolic diseases
(42, 43). Similarly, we found indoxyl sulphate, a protein-bound
uremic solute that induces oxidative stress and endothelial
dysfunction in animal models (44), to be associated with
increased GI and decreased CQI. Among metabolites involved
in energy metabolism, α-glycerophosphate and lactate were
selected for GI, succinate for GL, and fumarate for CQI.
Our results pointing to positive and negative associations of
cotinine, a metabolite of nicotine (45), with GI/GL and CQI,
respectively, may be explained by a residual effect, namely
the higher the GI/GL the higher the prevalence of smoking.
Similarly, the positive association of caffeine and its metabolite,
AAMU, with GI and their negative association with CQI

TABLE 2 Ten-fold cross-validated Pearson
correlations between the multimetabolite model and
GI, GL, and CQI1

Outcome Pearson’s r 95% CI

GI 0.30 0.26, 0.35
GL 0.22 0.17, 0.27
CQI 0.27 0.23, 0.31

1CQI, carbohydrate quality index; GI, glycemic index; GL, glycemic
load.

suggest a higher and a lower coffee consumption in those
individuals with an increased GI and CQI, respectively. Our
findings in relation to sorbitol suggest that lower GI and higher
CQI are related to increased artificial sweeteners consumption.
One possible explanation for this finding is reverse causation,
considering the high prevalence of T2D in our population.
Reverse causation also emerges as a prevailing explanation
for the association between the metabolite defined as fructose-
glucose-galactose and the 3 indices. This potential explanation
is further supported by the fact that when we excluded
T2D cases sorbitol was no longer associated with GI/CQI
and fructose-glucose-galactose with any of these 3 indices.
The LC-MS method did not distinguish glucose, fructose,
and galactose from one another. However, circulating plasma
fructose and galactose concentrations are generally very low
and therefore we can assume that glucose mainly accounted
for this chromatographic peak. In addition to these metabolites,
several plasma phospholipids were associated with the 3 dietary
carbohydrate indices. In this regard, increased concentrations
of 32:1 PC have been positively associated with T2D (46)
and, in our study, with high GI and GL. Concerning LPC
species, positive associations between 16:1 LPC and insulin
resistance have been recently reported from our group (47)
and, in the current study, 16:1 LPC was associated with
higher GL. Similarly, 16:0 LPE was associated with higher
CQI and this phospholipid has been previously associated with
lower risk of T2D (18). Considering ceramides, our group
has previously reported positive associations between baseline
plasma concentrations and incident CVD in the PREDIMED
cohort (17) and the 24:1 ceramide was associated with
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higher GI and lower CQI. We also observed that long-chain
acylcarnitines were associated with higher GL, whereas short-
and medium-chain acylcarnitines were associated with lower
CQI. Elevated concentrations of short-, medium-, and long-
chain acylcarnitines may be indicative of dysregulated fatty acid
oxidation and mitochondrial function and, in the PREDIMED
cohort, have been related to a higher risk of CVD (48).

This study has some limitations that need to be men-
tioned. Firstly, although we used a validated FFQ across a
relatively large sample size, measurement errors are inevitable.
Secondly, participants were older adults at high CVD risk
from a Mediterranean region and the generalizability of the
findings to other age groups or populations may be limited.
Thirdly, owing to its cross-sectional design, causation of the
observed associations cannot be inferred. Fourthly, although
the metabolomic profiles of GI and GL differed, there was an
overlapping for several metabolites identified. Further studies
are needed to understand the differences in the metabolites
selected for these 2 carbohydrate quality indices, which were
moderately correlated in our study (r = 0.55).

In conclusion, our findings suggest that a lower GI or GL
and a higher CQI are associated with a metabolomic profile
that is related to a potential favorable cardiometabolic risk in
an older Mediterranean population at high risk of CVD. These
associations cannot be viewed as causal and further studies are
needed to assess whether these metabolic profiles are associated
with chronic disease risk, so as to improve our understanding
of biological mechanisms through which carbohydrate quality
indices affect health.
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