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ABSTRACT
Background: Hydroxytyrosol is a phenolic compound that is present
in virgin olive oil (VOO) and wine. Hydroxytyrosol-related foods
have been shown to protect against cardiovascular disease (CVD).
Objective: We investigated the associations between hydroxytyrosol
and its biological metabolite, 3-O-methyl-hydroxytyrosol, also known
as homovanillyl alcohol (HVAL), with CVD and total mortality.
Design: We included 1851 men and women with a mean 6 SD age
of 66.8 6 6 y at high risk of CVD from prospective cohort data. The
primary endpoint was a composite of myocardial infarction, stroke,
and death from cardiovascular causes; the secondary endpoint was
all-cause mortality. Twenty-four-hour urinary hydroxytyrosol and
HVAL and catechol-O-methyltransferase (COMT) rs4680 genotypes
were measured.
Results: After multivariable adjustment, all biomarkers were
associated, as a continuous variable, with lower CVD risk, but
only HVAL showed a strong inverse association (HR: 0.44;
95% CI: 0.25, 0.80) for the comparison between quintiles. Only
HVAL, as a continuous variable, was associated with total mor-
tality (HR: 0.81; 95% CI: 0.70, 0.95). Individuals in the highest
quintile of HVAL compared with the lowest had 9.2 (95% CI:
3.5, 20.8) and 6.3 (95% CI: 2.3, 12.1) additional years of life or
years free of CVD, respectively, after 65 y. Individuals with
the rs4680GG genotype had the highest HVAL concentrations
(P = 0.05). There was no association between COMT genotypes
and events or interaction between COMT genotypes and HVAL
concentrations.

Conclusions: We report, for the first time to our knowledge, an inde-
pendent association between high urinary HVAL concentrations and a
lower risk of CVD and total mortality in elderly individuals. VOO and
wine consumption and a high metabolic COMT capacity for methyl-
ation are key factors for high HVAL concentrations. The association
that stems from our results reinforces the benefits of 2 key components
of the Mediterranean diet (wine and VOO). This trial was regis-

tered at www.predimed.es as ISRCTN35739639. Am J Clin Nutr
doi: 10.3945/ajcn.116.145813.
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INTRODUCTION

Hydroxytyrosol is a polyphenol present in free (as a simple
phenolic compound) and mainly conjugated forms (secoiridoids)
in 2 key components of the traditional Mediterranean diet
(TMD)21: olive oil [particularly virgin olive oil (VOO)] and
wine. Both TMD and olive oil consumption have been shown to
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be protective against cardiovascular disease (CVD) and total
mortality (1–5). Hydroxytyrosol and its related phenolic com-
pound tyrosol represent 70–80% of the total polyphenol VOO
content (6). In 2011, the European Food Safety Authority
released a health claim for the benefits of the daily ingestion of
olive oil rich in hydroxytyrosol for preventing LDL oxidation.
The panel considers that to bear the claim, 5 mg hydroxytyrosol
and its derivatives (e.g., oleuropein complex and tyrosol) in
olive oil should be consumed daily within the context of a
balanced diet (7).

Epidemiologic studies support that light-to-moderate alcohol
consumption (10–20 g/d) may reduce the risk of CVD and all-
cause mortality (8). Among other polyphenols, hydroxytyrosol
and tyrosol are also present in wine. Within the framework of
the PREDIMED (Prevención con Dieta Mediterránea) study
(ISRCTN35739639), we reported a direct dose-dependent as-
sociation between hydroxytyrosol urinary concentrations and
wine or alcohol consumption in individuals at high risk of CVD
(9). We recently reported (10) that alcohol, particularly red
wine, can promote an endogenous hydroxytyrosol generation at
moderate concentrations. Biological concentrations of hydroxy-
tyrosol obtained after moderate red wine consumption were
higher than those that, provided by VOO ingestion, had been
proven to have protective effects against risk factors for CVD in
human clinical trials (11, 12).

Hydroxytyrosol is absorbed from VOO in a dose-dependent
manner with respect to the polyphenol content of the olive oil
(13). The main biological metabolite of hydroxytyrosol is the
product of the catechol-O-methyltransferase (COMT) enzyme,
3-O-methyl-hydroxytyrosol, also known as homovanillyl alcohol
(HVAL) (14, 15). In experimental studies, hydroxytyrosol is one
of the strongest antioxidant, antiproliferative, proapoptotic, an-
tiplatelet, and anti-inflammatory polyphenols (16). In addition,
several clinical trials have shown the benefits of hydroxytyrosol-
rich olive oils on risk factors for CVD (11, 12, 17, 18). Circulat-
ing biomarkers are always subject to some degree of homeostasis,
absorption, distribution, or metabolism. Metabolic influences
seem to be especially relevant for the formation of hydroxy-
tyrosol from tyrosol and for the conversion of hydroxytyrosol
to HVAL (10, 14). To our knowledge, no prior studies have
evaluated how biological concentrations of hydroxytyrosol
and HVAL relate to CVD and total mortality. We hypothesized
that urinary hydroxytyrosol and HVAL could be associated with
lower fatal and nonfatal CVD events and all-cause mortality, and,
in the case of HVAL concentrations, genotypes of COMT, the
enzyme that catalyzes the O-methylation of various compounds
such as catechol estrogens and dietary polyphenols, could be
involved (15).

METHODS

Design and population

PREDIMED is a parallel-group, randomized, multicenter
controlled feeding trial aimed at assessing the effects of a TMD in
the primary prevention of CVD. Details of the recruitment
method and study design have been described elsewhere (4, 19).
Eligible participants included 7447 community-dwelling men
and women from Spain aged 55–80 y free from CVD at en-
rollment but at high risk. The participants had either type 2

diabetes mellitus or $3 major risk factors: smoking, hyperten-
sion, dyslipidemia, overweight or obesity, or a family history of
premature CVD. Eligible participants were randomly assigned
to 1 of 3 dietary intervention groups, 2 TMD groups supple-
mented with extra VOO or mixed nuts or to a control (low-fat)
diet. Yearly study-clinic evaluations were performed by trained
personnel and included a physical examination, diagnostic
testing, blood sampling, and questionnaires on health status,
medical history, and lifestyle. All participants provided written
informed consent, and the study protocol was approved by the
institutional review boards of the participating centers. In this
work, we performed observational analyses of pooled study
treatment arms.

Study measures

We measured hydroxytyrosol and HVAL in a random sample
of 1851 of the 7447 participants with the use of stored urine
samples from the initial visit, which was considered the baseline
year for this analysis. The analyses herein were conducted in
these participants assuming the design of an observational cohort
with a median follow-up of 4.8 y and controlling for relevant
confounding factors. Hydroxytyrosol and methyl hydroxytyrosol
(MOHTyr) were measured with the use of gas chromatography–
mass spectrometry. Limits of detection and quantification for
MOHTyr and hydroxytyrosol were 1.85 and 5.60 and 1.60 and
4.80 ng/mL, respectively. Relative SDs of low, medium, and
high control urine samples for 15, 30, and 60 ng MOHTyr/mL
were 8.3%, 6.4%, and 8.1%, respectively, and those for 21, 42,
and 98 ng hydroxytyrosol/mL were 7.1%, 4.7%, and 2.0%,
respectively.

See Supplemental Material 1 for details of cohort sampling
and hydroxytyrosol and HVAL measurements. At the initial
visit a 137-item validated semiquantitative food-frequency
questionnaire (19) was administered to calculate energy intake
and nutrients. CVD risk factors, anthropometric variables, blood
pressure, and laboratory measures were evaluated with the use
of standardized procedures, and alcohol use, physical activity,
and adherence to the TMD were evaluated with the use of val-
idated questionnaires (20–22). Total hydroxytyrosol (TOHTyr)
was calculated as the sum of hydroxytyrosol plus HVAL.

Endpoints

The primary endpoint was a composite of myocardial in-
farction, stroke, and death from cardiovascular causes. The
secondary endpoint was all-cause mortality. We used 4 sources of
information to identify endpoints: repeated contacts with par-
ticipants, contacts with family physicians, a yearly review of
medical records, and consultation of the National Death Index.
All medical records related to endpoints were examined by the
Endpoint Adjudication Committee, whose members were blin-
ded to the study group assignments. Only endpoints that were
confirmed by the committee were included in the analyses. The
criteria for adjudicating primary and secondary endpoints are
detailed in Supplemental Material 1.

Genotyping of the COMT locus

Genomic DNA was extracted from buffy coat with the
MagNaPure LC DNA Isolation Kit (Roche Diagnostics). The
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TABLE 1
Baseline characteristics of urinary hydroxytyrosol, homovanillyl alcohol, and total hydroxytyrosol1

Hydroxytyrosol

P-trend

Homovanillyl alcohol

P-trend

Hydroxytyrosol

P-trendQ1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Participants, n 363 362 363 362 362 354 354 354 354 353 346 346 346 346 346

Age, y 66.9 6 6.52 66.5 6 6.3 67.0 6 6.3 67.1 6 5.8 66.3 6 6.1 0.497 67.6 6 6.0 66.8 6 6.0 67.1 6 6.1 67.1 6 6.3 66.4 6 6.2 0.037 67.3 6 6.2 67.0 6 6.2 67.3 6 6.2 67.0 6 6.0 66.4 6 6.1 0.084

Men, % 40.2 46.7 43.3 54.7 63.3 ,0.001 33.1 49.2 47.5 57.9 60.3 ,0.001 35.8 43.1 46.8 57.5 61.8 ,0.001

Education . high

school, %

6.2 8.4 8.3 7.5 10.3 0.103 8.0 5.7 6.5 10.5 11.5 0.012 7.6 7.3 8.1 7.5 11.1 0.121

Current smoking, % 20.9 28.2 24.0 24.0 26.3 0.326 16.7 23.7 25.7 26.8 29.2 ,0.001 18.2 24.6 27.5 24.3 27.5 0.013

Diabetes mellitus, % 52.3 55.0 49.3 57.6 50.0 0.388 56.2 51.4 52.5 52.8 48.4 0.093 56.9 53.5 48.6 56.1 47.1 0.045

Hypertension, % 80.7 82.3 79.1 80.4 77.9 0.253 81.1 80.5 82.5 78.5 77.6 0.187 80.3 82.9 78.9 74.9 81.8 0.446

Dyslipidemia, % 72.5 66.6 66.1 65.7 71.0 0.626 69.5 62.7 64.7 68.6 72.5 0.128 68.2 67.6 65.6 64.5 73.7 0.326

BMI, kg/m2 29.9 6 3.9 29.8 6 3.7 29.7 6 3.4 29.6 6 3.2 29.2 6 3.3 0.004 29.8 6 4.0 29.9 6 3.3 29.7 6 3.3 29.3 6 3.3 29.4 6 3.4 0.021 30.0 6 4.0 29.6 6 3.4 29.7 6 3.5 29.5 6 3.2 29.3 6 3.3 0.017

Waist, cm 99.5 6 10.8 98.9 6 10.3 98.7 6 9.5 100 6 9.4 99.7 6 10.0 0.279 98.0 6 10.7 99.5 6 9.6 99.4 6 9.9 98.9 6 9.8 99.7 6 9.4 0.020 98.9 6 11.0 98.4 6 9.6 99.1 6 9.5 100 6 9.5 99.9 6 9.8 0.037

Physical activity, MET

min/wk

1546 6 1451 1825 6 1729 1727 6 1510 1990 6 1883 2194 6 1949 ,0.001 1680 6 1434 1787 6 1745 1937 6 1757 2060 6 1844 2010 6 1840 0.001 1617 6 1428 1835 6 1745 2047 6 1756 1993 6 1632 2158 6 2023 ,0.001

Alcohol, g/wk 4.8 (0–70)3 10.4 (0–73) 13.8 (0–83) 33.4 (0–161) 56.2 (5–190) ,0.001 4.8 (0–52) 10.4 (0–77) 30.7 (0–103) 35.5 (0–182) 46.6 (0–191) ,0.001 4.8 (0–49) 9.2 (0–73) 15.2 (0–89) 38.9 (0–182) 55.6 (5–190) ,0.001

Wine, g/wk 0.0 (0–30) 4.7 (0–55) 4.7 (0–70) 14.0 (0–79) 30.0 (0–175) ,0.001 0.0 (0–30) 4.7 (0–70) 10.0 (0–70) 14.3 (0–88) 30.0 (0–173) ,0.001 0.0 (0–30) 2.3 (0–56) 4.7 (0–70) 20.0 (0–85) 30.0 (0–175) ,0.001

Virgin olive oil, g/wk 55 (0–175) 70 (0–175) 70.0 (0–350) 70.0 (0–350) 175 (0–350) 0.007 50.1 (0–114) 51.4 (0–84) 69.8 (0–114) 95.4 (0–123) 107 (138) ,0.001 42.5 (0–175) 70.0 (0–350) 70.0 (0–350) 70 (0–175) 175 (0–350) ,0.001

Fruits, g/d 319 (222–448) 336 (235–452) 325 (214–460) 314 (235–443) 306 (206–438) 0.126 316 (218–450) 300 (217–425) 329 (232–454) 333 (225–473) 324 (208–450) 0.712 322 (221–449) 323 (216–471) 325 (231–447) 314 (225–460) 311 (206–438) 0.276

Vegetables, g/d 285 (215–371) 292 (222–384) 295 (230–395) 292 (222–387) 307 (232–409) 0.039 277 (214–366) 282 (221–364) 299 (232–398) 301 (229–395) 312 (232–418) ,0.001 285 (218–373) 276 (216–374) 301 (226–399) 293 (238–387) 309 (227–412) 0.011

Adherence to TMD4 8.6 6 1.8 8.8 6 1.9 8.7 6 1.9 8.8 6 1.9 8.8 6 1.9 0.056 8.7 6 1.8 8.5 6 2.1 8.8 6 1.9 8.8 6 1.8 8.9 6 2.0 0.051 8.6 6 1.9 8.6 6 1.8 8.8 6 1.9 8.8 6 1.9 8.8 6 1.9 0.063

1 Total hydroxytyrosol is the sum of hydroxytyrosol and O-methyl-hydroxytyrosol. P-trend across quintiles was based on linear regression for continuous variables and logistic regression for binary
variables. MET, metabolic equivalent; Q, quartile; TMD, traditional Mediterranean diet.

2Mean 6 SD (all such values).
3Median; IQR in parentheses (all such values).
4 Calculated by the 14-point score.
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During 13,070 person-years of follow-up, 142 cardiovascular
events and 123 deaths occurred. Across quintiles and after
adjusting for demographic, cardiovascular, lifestyle, and dietary
factors, concentrations of HVAL were associated with a lower
incidence of cardiovascular events (myocardial infarction, stroke,
or cardiovascular death) (Table 2). Participants in the third or
higher quintile of HVAL ($20 mmol/L) had a 56% lower risk
(P-trend , 0.001) than those in the lowest quintile. There was a
significant trend for a decreasing CVD risk across quintiles for all
biomarkers (P , 0.05) (Table 2). Concerning total mortality
(Table 3), no differences across quintiles of biomarker concen-
trations were found, but a decreasing trend across quintiles was
observed for MOHTyr (P = 0.017) (Tables 2 and 3). Sensitivity
analyses for the association of HVAL with CVD by group of
intervention showed that, despite the same trend in all groups,
MOHTyr achieved the greatest significance (P , 0.001) in the
group consuming the Mediterranean diet enriched with VOO
(Supplemental Table 1).

In semiparametric analyses, associations of urinary hydroxy-
tyrosol, HVAL, and TOHTyr with primary cardiovascular events
were significant in a linear manner (Figure 1), with a decrease of
HRs from low to high hydroxytyrosol, HVAL, and TOHTyr
concentrations (P , 0.005). Associations of the biomarkers with
total mortality showed that the HR decreased linearly from low to
high MOHTyr concentrations (P = 0.024) only in the case of
HVAL (Figure 2).

From all biomarkers, only HVAL concentrations were significantly
associated with gained years of life or years free of CVD (Supple-
mental Figure 1) after the age of 65 y. Individuals in the highest
quintile of HVAL had a mean 9.5 y (95% CI: 3.5, 20.8 y) longer life
after the age of 65 y. With regard to being free of a cardiovascular
event, individuals aged .65 y in the highest quintile of HVAL had a
mean 6.3 additional years free of CVD (95% CI: 2.32, 12.15 y)
compared with individuals with lower concentrations of HVAL (Sup-
plemental Figure 1). Findings were similar for both sexes separately.

The COMT genotype distribution [Val/Val (G/G), Val/Met
(G/A), or Met/Met (A/A)] among individuals was in Hardy-
Weinberg equilibrium. Waist circumference and vegetable con-
sumption (P , 0.05) were lower in the rs4680AG genotype
(Supplemental Table 7). Individuals with the rs4680GG ge-
notype had higher concentrations of HVAL than those with other
genotypes (Table 4). The distribution of the COMT rs4680 al-
leles was similar among survivors and those who died and
among those free of a cardiovascular event or those who had
suffered one (Supplemental Table 8). No association was ob-
tained among COMT genotypes and all-cause mortality or CVD
risk. No interaction between the COMT rs4680 genotype and
HVAL was found (Supplemental Table 9). Individuals with low
HVAL concentrations had an w2-fold greater risk of CVD and
all-cause mortality than those with high HVAL concentrations
independently of the COMT genotype, with multiplicative and
additive interactions being nonsignificant (P . 0.05).

TABLE 2
Prospective associations (HRs) of urinary hydroxytyrosol, homovanillyl alcohol, and total hydroxytyrosol with primary cardiovascular event among 1851
individuals at risk of CVD1

Quintile

P-trend2 n
P-group effect and
quintile interaction31 2 3 4 5

Hydroxytyrosol
Participants, n 363 362 363 362 362
Events, n 32 34 25 17 23
mmol/L 27.6 58.1 97.9 166.8 430.5
Age- and sex-adjusted 1 (ref) 1 (0.62–1.63)4 0.71 (0.42–1.2) 0.41 (0.23–0.75) 0.56 (0.32–0.96) 0.001 1812 0.526
Multivariate-adjusted5 1 (ref) 0.98 (0.6–1.6) 0.73 (0.43–1.23) 0.41 (0.23–0.75) 0.61 (0.36–1.06) 0.003 1783 0.247
Multivariate- + diet-adjusted6 1 (ref) 1.01 (0.62–1.65) 0.78 (0.46–1.34) 0.46 (0.25–0.84) 0.69 (0.4–1.21) 0.017 1779 0.457

O-Methyl-hydroxytyrosol
Participants, n 354 354 354 354 353
Events, n 41 36 20 19 17
mmol/L 5.4 11.2 19.8 37.4 146.5
Age- and sex-adjusted 1 (ref) 0.8 (0.51–1.25) 0.44 (0.25–0.74) 0.4 (0.23–0.69) 0.4 (0.22–0.71) ,0.001 1769 0.105
Multivariate-adjusted5 1 (ref) 0.78 (0.5–1.23) 0.43 (0.25–0.74) 0.41 (0.24–0.71) 0.41 (0.23–0.73) ,0.001 1745 0.139
Multivariate- + diet-adjusted6 1 (ref) 0.82 (0.52–1.29) 0.46 (0.27–0.8) 0.44 (0.25–0.77) 0.44 (0.25–0.8) ,0.001 1741 0.112

Total hydroxytyrosol7

Participants, n 346 346 346 346 346
Events, n 32 33 19 19 19
mmol/L 0.3 0.5 0.8 1.5 3.7
Age- and sex-adjusted 1 (ref) 1.04 (0.64–1.7) 0.56 (0.32–0.99) 0.51 (0.29–0.9) 0.52 (0.29–0.92) 0.002 1730 0.498
Multivariate-adjusted5 1 (ref) 1.09 (0.67–1.78) 0.61 (0.34–1.07) 0.52 (0.29–0.92) 0.59 (0.33–1.06) 0.005 1706 0.641
Multivariate- + diet-adjusted6 1 (ref) 1.11 (0.68–1.81) 0.64 (0.36–1.14) 0.58 (0.32–1.04) 0.68 (0.37–1.23) 0.028 1702 0.511

1All P values were determined with the use of Cox regression analysis. A cardiovascular event was defined as a composite of myocardial infarction,
stroke, or death from cardiovascular causes. CVD, cardiovascular disease; ref, reference.

2P value corresponding to the interaction with the type of diet followed during the study. All models were stratified by the center.
3P value corresponding to the improvement of the model when including intervention group and its interaction with quintiles.
4Median; IQR in parentheses (all such values).
5 Adjusted for age, sex, education, current smoking, waist circumference, physical activity, diabetes, and dyslipidemia.
6 Further adjusted for virgin olive oil, wine, and vegetable consumption.
7 Sum of hydroxytyrosol and O-methyl-hydroxytyrosol.
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DISCUSSION

HVAL concentrations were associated with a 56% lower CVD
risk across quintiles in individuals at high risk of CVD in this
study. After the age of 65 y, our predictive model suggested that
the gained years of life and the years free of CVD could be 9.5 and
6.3 y, respectively, among participants with higher urinary HVAL
concentrations compared with lower ones. In addition, HVAL was
associated with a lower total mortality and lower CVD risk.

Carriers of the COMT rs4680 GG genotype displayed higher
HVAL concentrations. Neither an association between COMT
genotypes and CVD or all-cause mortality nor an interaction
between COMT genotypes and HVAL concentrations was found.

Both experimental and human studies show the benefits of
hydroxytyrosol-related foods such as VOO and wine on CVD risk
factors, such as: 1) decreasing heart rate, blood pressure, LDL
oxidation, inflammation, thrombotic markers, and lipoprotein
particle atherogenic ratios; 2) increasing HDL cholesterol and
HDL lipoprotein functionality; and 3) improving endothelial
function (12, 16, 27). Polyphenols from VOO have also been
shown to decrease the expression of atherosclerosis-related
genes (27, 28). We have recently provided a mechanistic ex-
planation for the combined protective effect of the simultaneous
consumption of the 2 key components of the Mediterranean diet:
VOO and wine (10). On the one hand, VOO provides tyrosol and
hydroxytyrosol, whereas through the effect of alcohol on do-
pamine and tyramine metabolism, wine increases the endogenous

generation of hydroxytyrosol and tyrosol in humans (10). On the
other hand, alcohol from wine increases tyrosol bioavailability
in humans, and an in vivo conversion of tyrosol to hydroxy-
tyrosol occurs (10). Thus, a synergic effect of wine and VOO on
increasing the human hydroxytyrosol pool in vivo is likely to
occur. HVAL in vivo concentrations, however, are not only de-
pendent on the hydroxytyrosol concentrations but also the in-
dividual metabolic capacity for promoting COMT-regulated
hydroxytyrosol methylation. A substitution of Val (G) by Met
(A) at codon 158 of the COMT gene affects the activity of the
COMT enzyme. Individuals with the rs4680 GG genotype
have a 3- to 4-fold higher activity than those with other geno-
types (15). In agreement with this, in our study the GG genotype
was associated with higher HVAL concentrations. This fact in-
dicates the relevance of nondietary processes for having high
concentrations of HVAL.

The hydroxytyrosol and HVAL concentrations observed herein
could be referred to as steady-state concentrations. Despite their
short half-life (13), hydroxytyrosol and HVAL accumulate in the
body after the sustained consumption of hydroxytyrosol-rich
foods such as VOO (11). From our data, protection from CVD
seems to occur from HVAL urinary concentrations $20 mmol/L
(Table 2). This value could be considered a protective threshold
for the combined adherence of 2 key products of the Mediter-
ranean Diet: VOO and wine. Similar concentrations of HVAL
have been reached in the plasma of healthy individuals after a daily

TABLE 3
Prospective associations (HRs) of urinary hydroxytyrosol, homovanillyl alcohol, and total hydroxytyrosol with total mortality among 1851 individuals at risk
of CVD1

Quintile

P-trend2 n
P-group effect and
quintiles interaction31 2 3 4 5

Hydroxytyrosol
Participants, n 363 362 363 362 362
Events, n 23 28 26 14 27
mmol/L 27.6 58.1 97.9 166.8 430.5
Age- and sex-adjusted 1 (ref) 1.17 (0.67–2.04)4 1.03 (0.58–1.8) 0.47 (0.24–0.92) 0.93 (0.53–1.64) 0.165 1812 0.171
Multivariate-adjusted5 1 (ref) 1.14 (0.66–1.99) 1.04 (0.59–1.84) 0.46 (0.24–0.9) 0.98 (0.55–1.73) 0.205 1783 0.18
Multivariate- + diet-adjusted6 1 (ref) 1.15 (0.66–2) 1.02 (0.57–1.82) 0.45 (0.23–0.88) 0.98 (0.55–1.75) 0.195 1779 0.175

O-Methyl-hydroxytyrosol
Participants, n 354 354 354 354 353
Events, n 28 36 23 21 14
mmol/L 5.4 11.2 19.8 37.4 146.5
Age- and sex-adjusted 1 (ref) 1.23 (0.75–2.03) 0.79 (0.45–1.37) 0.7 (0.39–1.24) 0.55 (0.29–1.05) 0.011 1769 0.327
Multivariate-adjusted5 1 (ref) 1.25 (0.76–2.06) 0.76 (0.44–1.33) 0.71 (0.4–1.27) 0.56 (0.29–1.08) 0.014 1745 0.298
Multivariate- + diet-adjusted6 1 (ref) 1.24 (0.75–2.05) 0.74 (0.42–1.3) 0.7 (0.39–1.25) 0.57 (0.3–1.1) 0.017 1741 0.288

Total hydroxytyrosol7

Participants, n 346 346 346 346 346
Events, n 26 27 25 17 22
mmol/L 0.3 0.5 0.8 1.5 3.7
Age- and sex-adjusted 1 (ref) 1.09 (0.64–1.87) 0.94 (0.54–1.62) 0.57 (0.31–1.06) 0.78 (0.44–1.39) 0.098 1730 0.141
Multivariate-adjusted5 1 (ref) 1.11 (0.64–1.91) 0.98 (0.56–1.71) 0.56 (0.3–1.05) 0.84 (0.47–1.5) 0.134 1706 0.164
Multivariate- + diet-adjusted6 1 (ref) 1.1 (0.64–1.89) 0.94 (0.53–1.66) 0.54 (0.29–1.02) 0.83 (0.46–1.5) 0.12 1702 0.136

1All P values were determined with the use of Cox regression analysis. CVD, cardiovascular disease; ref, reference.
2P value corresponding to the interaction with the type of diet followed during the study. All models were stratified by the center.
3P value corresponding to the improvement of the model when including intervention group and its interaction with quintiles.
4Median; IQR in parentheses (all such values).
5 Adjusted for age, sex, education, current smoking, waist circumference, physical activity, diabetes, and dyslipidemia.
6 Further adjusted for virgin olive oil, wine, and vegetable consumption.
7 Sum of hydroxytyrosol and O-methyl-hydroxytyrosol.
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FIGURE 2 Multivariate-adjusted relation of hydroxytyrosol, homova-
nillyl alcohol, and total hydroxytyrosol (hydroxytyrosol + homovanillyl al-
cohol) with all-cause mortality. Associations were evaluated with the use of
restricted cubic splines. The solid lines represent the central risk estimate,
and the dotted lines represent the 95% CIs adjusted for age, sex, center,
education, current smoking, waist circumference, physical activity, diabetes,
and dyslipidemia and virgin olive oil, wine, and vegetable consumption.

FIGURE 1 Multivariate-adjusted relation of hydroxytyrosol, homova-
nillyl alcohol, and total hydroxytyrosol (hydroxytyrosol + homovanillyl
alcohol) with primary cardiovascular event. Associations were evaluated
with the use of restricted cubic splines. The solid lines represent the central risk
estimate, and the dotted lines represent the 95% CIs adjusted for age, sex,
center, education, current smoking, waist circumference, physical activity,
diabetes, and dyslipidemia and virgin olive oil, wine, and vegetable
consumption.
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sustained consumption during 4 d of 25 mL rich-hydroxytyrosol
VOO (13), and 6-fold higher HVAL urinary concentrations were
observed after moderate red wine ingestion (150 mL) (10).

The protective antioxidant activity of HVAL in experimental
studies has been said to be greater than (29), similar to (30), and
lower than (31) that of hydroxytyrosol according to the exper-
imental model used. However, chemically, HVAL is a compound
that is far more stable in biological fluids than hydroxytyrosol
(32). This stability allows HVAL to exist for longer than
hydroxytyrosol in biological fluids and intracellular spaces; thus,
the former can exert benefits for longer. Further studies on the
effect of HVAL on pathologic mechanisms, such as inflamma-
tion, endothelial function, and thrombosis, are warranted.

Contradictory data exist on the influence of COMT genotypes
on CVD risk. The rs4680GG genotype has been associated
with a high risk of hypertension (33) and CVD (34), whereas the
rs4860AA genotype has been shown to be protective against
myocardial infarction in hypertensive patients (35). In contrast,
the low COMT activity of the rs4860AA genotype has been
shown to be an independent risk factor for acute coronary events
in Finnish men (36). In our study, however, we did not find this
association. Differences between populations could explain the
differences in the results obtained herein. In agreement with
others (37), in this study we did not observe any association
between COMT genotypes and total mortality. Taking into ac-
count the absence of a strong association between the COMT
polymorphism and HVAL concentrations, as well as the high
pleiotropy of the COMT enzyme, this polymorphism cannot be
used as a proxy for Mendelian randomization (38). Therefore,
the absence of associations between the COMT genotypes and
CVD or total mortality cannot be interpreted as not causal.

Our study has strengths and limitations. All variables in the
multicenter study were collected through well-established
common protocols (39). The associations among biomarkers
and CVD or all-cause mortality were adjusted by possible
confounders. The biomarkers in this study were measured at
baseline, however, and changes over time could influence the
results and in some cases lead to misclassifications. In addition,
the sample size could not allow enough power to detect small
differences, particularly in the case of genetic data. In addition,
this was an observational study and thus cannot demonstrate
causality. Cardiovascular events and total mortality were adju-
dicated with the use of medical records that were examined
by an endpoint adjudication committee. However, some mis-

classifications could occur. The fact that our participants were
at a high risk of CVD limits the generalizability of the results to
other populations.

In summary, we report herein for the first time to our
knowledge an independent association between high urinary
HVAL concentrations and a lower risk of CVD and total mortality
in elderly individuals at a high risk of CVD. From our results,
VOO and wine consumption and a high metabolic capacity of
COMT-mediated methylation are key factors for achieving high
HVAL concentrations. The association that stems from our re-
sults reinforces the benefits of consuming 2 key components of
the Mediterranean diet.
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Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, et al. Primary
prevention of cardiovascular disease with a Mediterranean diet. N Engl
J Med 2013;368:1279–90.
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9. Schröder H, de la Torre R, Estruch R, Corella D, Martı́nez-
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13. Weinbrenner T, Fitó M, de la Torre R, Saez GT, Rijken P, Tormos C,
Coolen S, Albaladejo MF, Abanades S, Schroder H, et al. Olive oils
high in phenolic compounds modulate oxidative/antioxidative status in
men. J Nutr 2004;134:2314–21.
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