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ABSTRACT
Background: The role of trimethylamine-N-oxide (TMAO) in type
2 diabetes (T2D) is currently partially understood and controversial.
Objective: The aim was to investigate associations between TMAO
and related metabolites with T2D risk in subjects at high risk of car-
diovascular disease.
Design: This is a case-cohort design study within the Preven-
ción con Dieta Mediterránea (PREDIMED) study, with 251 inci-
dent T2D cases and a random sample of 694 participants (641
noncases and 53 overlapping cases) without T2D at baseline (me-
dian follow-up: 3.8 y). We used liquid chromatography–tandem
mass spectrometry to measure plasma TMAO, l-carnitine, betaine,
lyso-phosphatidylcholine (LPC) and lyso-phosphatidylethanolamine
(LPE) species, phosphocholine, α-glycerophosphocholine, and
choline at baseline and after 1 y. We examined associations with the
use of weighted Cox proportional hazard models, accounting for the
weighted case-cohort design by the Barlow method.
Results:After adjustment for recognized T2D risk factors and multi-
ple testing, individuals in the highest quartile of baseline TMAO and
α-glycerophosphocholine had a lower risk of T2D [HR (95% CI):
0.52 (0.29, 0.89) and 0.46 (0.24, 0.89), respectively]. The HR (95%
CI) comparing the extreme quartiles of betaine was 0.41 (0.23, 0.74).
Similar trends were observed for C16:0 LPC, C18:1 LPC, C18:0

Q5

LPC, C20:4 LPC, C22:6 LPC, C18:1 LPC plasmalogen, and C16:0
LPE. After correcting for multiple comparisons, participants in the
highest quartile of 1-y changes in C18:1 LPC plasmalogen concen-
trations had a lower T2D risk than the reference quartile.

Conclusion: Whether the associations between plasma TMAO and
certain metabolite concentrations with T2D risk reflect its patho-
physiology or represent an epiphenomenon need to be elucidated.
This trial is registered at http://www.controlled-trials.com as IS-
RCTN35739639. Am J Clin Nutr 2018;0:1–10.

Keywords: trimethylamine-N-oxide, metabolites, type 2 diabetes, Q6
case-cohort, Mediterranean diet, PREDIMED

INTRODUCTION

Plasma concentrations of trimethylamine-N-oxide (TMAO)
are determined by diet, the gut microbiome, and liver flavin-
containing monooxygenase 3 (FMO3) activities (1). They are di-
rectly associated with the consumption of animal-derived foods
(2, 3) containing choline, phosphatidylcholine, and l-carnitine,
which are processed by gut bacteria resulting in the release of
various metabolites including trimethylamine (TMA), into the
blood. TMA is then transported to the liver where it is con-
verted to TMAO, which is involved in various physiologic and
pathophysiologic processes such as the deposition and removal Q7
of cholesterol from the artery endothelium (4, 5).

Supported by research grant R01-DK-102896 from the NIH. The Preven-
ción con Dieta Mediterránea (PREDIMED) trial was supported by the of-
ficial funding agency for biomedical research of the Spanish government,
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2 PAPANDREOU ET AL.

TMAO has been proposed as a molecule mediating the de-
velopment of type 2 diabetes (T2D) (6). Higher plasma TMAO
concentrations and alterations in interrelated pathways, such as
phospholipid modification and methylation, have been associ-
ated with T2D (7). In this context, plasma choline concentra-
tions have been found to be positively related, whereas betaine
concentrations are inversely related to glucose concentrations (8)
and lowered in insulin-resistant subjects (9). Betaine can be de-
rived from choline or from l-carnitine metabolism (10), with l-
carnitine associated with better insulin sensitivity in diabetics and
with insulin-mediated glucose uptake in normoglycemic subjects
(11).

Substantial inverse associations between dietary patterns con-
sisting of healthy foods and the risk of T2D have been re-
ported (12, 13). Recently, in a secondary outcome analysis of
the Prevention of Disease with Mediterranean Diet [Prevención
con Dieta Mediterránea (PREDIMED)] trial, a Mediterranean
diet (MedDiet) reduced the risk of T2D by 30% compared with
the control group (14). Although the benefits of this dietary
pattern for T2D prevention is clearly observed in the PRED-
IMED trial, the biological mechanisms underlying these bene-
fits are not completely understood. Consequently, an approach

Q8

Q9

throughmetabolite-profiling technology (metabolomics) (15) can
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strengthen existing pathophysiologic evidence, providing further
support for dietary prevention of T2D.

To our knowledge, no prospective study has assessed the asso-
ciation between TMAO with T2D risk. Thus, the role of TMAO
in T2D development is not completely understood. Taking this
into account, the primary aim of the present prospective study,
nested in the framework of the PREDIMED trial, was to exam-
ine possible associations between baseline and 1-y changes in the
concentrations of TMAO and several metabolites involved in rel-
evant pathways [l-carnitine, betaine, lyso-phosphatidylcholine
(LPC) and lyso-phosphatidylethanolamine (LPE) species, phos-
phocholine, α-glycerophosphocholine, and choline], with the risk
of incident T2D. In addition, we aimed to examine whether a
MedDiet modified these associations.

METHODS

Study design and participants

This study used a case-cohort design nested within the PRED-
IMED trial (ISRCTN35739639), a multicenter, single-blinded,
controlled trial, conducted in Spanish primary health care cen-
ters. The design of the PREDIMED trial has been described in
detail elsewhere (16, 17). In brief, 7447 participants at high car-
diovascular disease (CVD) risk were allocated to a MedDiet sup-
plemented with extra-virgin olive oil, a MedDiet supplemented
with mixed nuts, or a control diet consisting of advice to reduce
fat intake. For the present study, we considered the 3541 partici-
pants who were free of T2D at study inception. The present case-
cohort study comprises a random selection of 694 nondiabetic
participants (?20%) from the eligible subjects of the PREDIMED
cohort without T2D at study inception and with available blood
samples, together with all incident cases of T2D that occurred
during the follow-up with available plasma samples (251 out of
the 273 cases). Of the 892 participants included in our analyses,
641 were in the subcohort (including 53 overlapping cases be-
tween the subcohort and the total cases) and 198 comprised the
rest of the T2D cases, which gave a total of 251 cases (Supple-
mental Figure 1). Of these, 686 out of the 892 participants had
available samples after 1 y of follow-up and were included in the
1-y change analyses (Supplemental Figure 1). The institutional
review boards of the recruitment centers approved the study pro-
tocol, and participants provided written informed consent.

Study samples and metabolomics profiling

Fasting (for≥ 8 h) plasma EDTA samples were collected from
subjects and stored at − 80°C. In June 2015, pairs of samples for
each participant (baseline and at the end of the 1-y follow-up)
were randomly ordered and shipped on dry ice to the Broad Insti-
tute, Inc., Boston, Massachusetts, for metabolomics assays. Liq-
uid chromatography–tandemmass spectrometry techniques were
used to perform semiquantitative profiling of several metabo-
lites in blood plasma (TMAO, l-carnitine, betaine, LPC and LPE
species, phosphocholine, α-glycerophosphocholine, and choline)
and identify relations between them. A system composed of a
Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.) coupled to a Q
Exactive hybrid quadrupole orbitrap mass spectrometer (Thermo
Fisher Scientific) was used (18–24). Metabolite identities were
confirmed by using authentic reference standards. Raw data were
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processed with the use of TraceFinder software (Thermo Fisher
Scientific) and Progenesis QI (Nonlinear Dynamics).

Ascertainment of T2D cases

Information was collected through contact with participants
and primary health care physicians, annual follow-up visits,
yearly ad hoc reviews of medical charts, and annual consultation
of the National Death Index. Because T2Dwas a prespecified sec-
ondary outcome of the PREDIMED trial, it was identified at base-
line by clinical diagnosis or use of antidiabetic medication. The
diagnosis of new-onset T2D during follow-up has been described
elsewhere (14) and briefly followed the American Diabetes As-
sociation criteria (25), namely 2 confirmations of fasting plasma
glucose ≥ 7.0 mmol/L or 2-h plasma glucose ≥ 11.1 mmol/L af-
ter a 75-g oral-glucose load.

Assessment of covariates and other variables

At baseline and yearly during the follow-up, the participantsQ10
completed a 47-item questionnaire related to lifestyle variables,
smoking status, medical history, and medication use. A validated
Spanish version of the Minnesota Leisure-Time Physical Activ-
ity Questionnaire was administered in order to evaluate physi-
cal activity (26). To assess the degree of adherence to the Med-
Diet, a 14-item validated questionnaire was filled in for each par-
ticipant (27). BMI was calculated as weight divided by height
squared (kg/m2). Participants’ triacylglycerol and total, HDL, and
LDL cholesterol concentrations were measured by using fast-
ing plasma at baseline. Blood glucose and insulin concentrations
were centrally assessed at baseline and at the end of the 1 y of
follow-up. Insulin resistance was estimated by the HOMA-IRQ11
method with the use of the following equation (28): HOMA-IR
= [fasting insulin (µIU/mL) × fasting glucose (mmol/L)]/22.5.

Statistical analysis

Baseline characteristics of cases and noncases are described
as means ± SDs for quantitative variables and percentages or
numbers for categorical variables. We applied a natural loga-
rithmic transformation to approximate a normal distribution of
metabolite concentrations. Person-time of follow-up was calcu-
lated as the interval between the baseline visit and date of T2D
event, death, or date of the last contact, whichever came first.
We used Cox proportional hazard models, with Barlow weights
(to account for the overrepresentation of cases), to estimate HRs
and their 95% CIs for the risk of T2D. A crude model and 2
multivariable-adjusted Cox regression models were fitted as fol-
lows: 1) multivariable model 1 adjusted for age (years), sex (male
or female), BMI (kg/m2), intervention group, and baseline fast-
ing glucose (milligrams per deciliter) (adding a quadratic term
to account for the departure from linearity) and 2) multivariable
model 2 additionally adjusted for smoking (never, current, or for-
mer), leisure-time physical activity (metabolic equivalent tasks in
minutesper day), baseline dyslipidemia (yes or no), and hyperten-
sion (yes or no).We stratified themodels according to recruitment
center. Baseline metabolites were analyzed as both continuous
variables (1-SD increment in their transformed levels) and by us-
ing quartiles (using cutoffs defined among noncases). To appraise

the linear trend across quartiles, the median metabolite concen-
tration within each quartile was included in the Cox regression
models as a continuous variable. To account for multiple testing,
we adjusted P values of the multivariable-adjusted associations
between quartiles or 1-SD increment in metabolite concentration
and T2D risk with the use of the Benjamini-Hochberg false dis-
covery rate procedure (29). A false discovery rate P value < 0.05
was considered to be significant.

We also examined the associations of 1-y changes in metabo-
lites with T2D risk. We used the same models as in the base-
line value analyses but further adjusted for baseline metabolite
concentrations. With respect to metabolites, we first calculated
the ratio between 1-y and baseline values and then normalized
this ratio with the natural logarithmic transformation. To test the
robustness of our results in relation to the association between
TMAO and T2D risk, we conducted 2 sensitivity analyses: 1)
testing the association between baseline values and T2D risk af-
ter excluding early cases (<1 y) and 2) testing the associations
between the mean values at baseline and 1-y follow-up and sub-
sequent T2D risk (T2D cases that occurred from baseline through
the 1-y follow-up were excluded). To examine whether the asso-
ciation between baseline and 1-y changes in metabolites and in-
cident T2D varied by intervention group, we stratified the analy-
sis described above by intervention group (both merged MedDiet
interventions compared with the control). We also added a mul-
tiplicative term (1 df) between intervention assignment (merged
MedDiet compared with the control group) and metabolites (con-
tinuous) into the multivariable Cox models stratified on interven-
tion assignment to test for interactions by means of likelihood
ratio tests. In addition, we compared differences in 1-y changes
in metabolites in the MedDiet group with changes in the con-
trol group (adjusted for the aforementioned covariates) with the
use of ANCOVA. Finally, we applied multiple linear regression
analyses to examine relations between TMAO concentrations and
precursors (choline, betaine, and l-carnitine) at baseline and at
the 1-y follow-up in the whole group, adjusting for age, sex, and Q12
HOMA-IR. Statistical analyses were performed with the use of
Stata 13.1 (StataCorp.). A 2-sided P value< 0.05 was considered
significant.

RESULTS

Baseline characteristics

The median follow-up of the study population was 3.8 y. The
baseline characteristics of the 892 subjects (251 cases and 641
noncases) included in the present case-cohort study are shown in
Table 1. The mean age of participants at baseline was 66.5 y, and
the mean ± SD BMI was 30.1 ± 3.5. Compared with noncases, Q13
those participants who developed T2D were more likely to be
men, current smokers, and to have a higher prevalence of hyper-
tension in addition to a higher BMI and fasting glucose and tria-
cylglycerol concentrations (Table 1).

Baseline metabolites and risk of T2D

Overall group

The associations between plasma metabolites with the risk of
T2D in the overall group are presented in Table 2. In the group
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TABLE 1
Baseline characteristics of the study population1

Total Cases Noncases P

n 892 251 641
Age, y 66.5 ± 5.7 66.4 ± 5.7 66.5 ± 5.7 0.781
Sex, % female 61.2 55.0 63.6 0.017
BMI, kg/m2 30.1 ± 3.5 30.8 ± 3.3 29.8 ± 3.6 <0.001
Physical activity, METs/d 240.7 ± 234.6 249.2 ± 233.5 237.4 ± 235.1 0.500
Intervention group, %

MedDiet + EVOO 30.6 29.9 30.9 0.425
MedDiet + nuts 36.3 37.2 33.8
Control group 33.1 36.3 31.8

Hypertension, % 91.7 96.0 90.0 0.003
Dyslipidemia, % 84.3 79.7 86.1 0.018
Smoking, %

Never 59.0 52.6 61.5 0.006
Former 22.4 22.3 22.5
Current 18.6 25.1 16.0

Score for adherence to MedDiet2 8.5 ± 2.0 8.4 ± 2.0 8.6 ± 1.9 0.186
Fasting blood glucose, mg/dL 103.3 ± 17.6 118.6 ± 18.0 97.8 ± 13.8 <0.001
Total cholesterol, mg/dL 222.2 ± 39.3 221.7 ± 42.3 222.4 ± 38.1 0.846
HDL cholesterol, mg/dL 54.7 ± 13.0 52.6 ± 12.7 55.7 ± 13.1 0.014
LDL cholesterol, mg/dL 139.7 ± 32.9 137.0 ± 31.6 141.0 ± 33.3 0.201
Triacylglycerol, mg/dL 140.1 ± 85.0 169.0 ± 121.0 128.6 ± 62.0 <0.001

1Values are means ± SDs unless otherwise indicated. Chi-square test was used for comparison of categorical variables and Student’s t test was used for
comparison of continuous variables. EVOO, extra-virgin olive oil; MedDiet, Mediterranean diet; MET, metabolic equivalent.

2This score is based on the 14-item dietary screener.

adjusted for age, sex, BMI, intervention group, glucose, smok-
ing, leisure-time physical activity, dyslipidemia, and hyperten-
sion (multivariable model 2), the estimated HR for incident T2D
reached significance only in the highest, compared with the low-
est, quartile of TMAO concentrations (HR: 0.52; 95% CI: 0.29,
0.89). In both sensitivity analyses, TMAO concentrations in the
highest quartile were significantly associated with lower T2D risk
(a: HR: 0.52; 95% CI: 0.29, 0.93; b: HR: 0.44; 95% CI: 0.20,Q14
0.96) compared with the lowest quartile. In the group adjusted
for age, sex, BMI, intervention group, and glucose (multivariable
model 1), the highest quartile of phosphocholine was associated
with a lower risk of T2D (HR: 0.51; 95% CI: 0.27, 0.99), but
these associations were no longer significant after further adjust-
ment. With regard to betaine, the estimated HR for incident T2D
in the highest compared with the lowest quartile was 0.41 (95%
CI: 0.23, 0.74; P= 0.003). Concerning lyso-choline species, sig-
nificant inverse associations with T2D incidence were observed
for C16:0 LPC, C18:1 LPC, C18:0 LPC, C20:4 LPC, C22:6 LPC,
and C18:1 LPC plasmalogen, either metabolites were modeledQ15
continuously (per 1 SD) or as quartiles (Table 2). Notably, per
1-SD increase in C18:1 LPC plasmalogen concentrations, a 54%
lower risk (HR: 0.46; 95% CI: 0.35, 0.59) of T2D was observed
(P< 0.001), and individuals in the highest quartile had an HR of
0.15 (95% CI: 0.06, 0.35; P < 0.001).

With regard to lyso-ethanolamine species, concentrations of
C16:0 LPE (per 1-SD increase and highest quartile) were signif-
icantly associated with a reduced risk of T2D. Per 1-SD increase
in l-carnitine, α-glycerophosphocholine, and betaine concentra-
tions, a 19% (HR: 0.81; 95% CI: 0.67, 0.97; P = 0.025), 39%
(HR: 0.61; 95% CI: 0.45, 0.83; P = 0.002), and 25% (HR: 0.75;
95% CI: 0.61, 0.91; P = 0.004) lower risk of T2D was found,

respectively. These associations remained significant after ac-

Q16

counting for multiple comparisons.

MedDiet and control group

In stratified analyses by intervention group, the estimated
HR for incident T2D in the highest compared with the low-
est quartile of α-glycerophosphocholine concentrations was 0.27
(95% CI: 0.12, 0.62; P = 0.002) in the MedDiet group (Sup-
plemental Table 1) and 1.08 (95%: CI 0.14, 1.16; P > 0.05)
in the control group (Supplemental Table 2). In the Med-
Diet group, the HR associated with a 1-SD increment in α-
glycerophosphocholine concentration was 0.55 (95% CI: 0.37,
0.82; P = 0.003, P-interaction = 0.041) (Figure 1A, Supple-
mental Table 3), whereas in the control group no significant as-
sociations were observed (Figure 1B).

One-year changes in concentrations of metabolites and the
risk of T2D

Associations between 1-y changes in metabolite concen-
trations across quartiles and the risk of T2D are shown in
Table 3. In the highest quartile of increase in the concentrations of Q17
TMAO, a significant inverse association with T2D risk was found
(HR: 0.49; 95% CI: 0.25, 0.98). Several lyso-choline species
(C16:0 LPC, C18:1 LPC, and C18:0 LPC), including C18:1 LPC
plasmalogen, C16:0 LPE, and α-glycerophosphocholine, were
significantly associated with a decreased risk of T2D. After ad-
justment for multiple testing, only C18:1 LPC plasmalogen re-
mained significant. We repeated the analyses with the use of a
1-SD increment in 1-y change in metabolite concentrations and,
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TMAO, RELATED METABOLITES, AND T2D RISK 5

TABLE 2
Associations of baseline individual metabolite concentrations with the risk of type 2 diabetes in the PREDIMED trial, 2003–2010, in the overall group.1

Quartile of plasma metabolite concentration P

Metabolite 1 2 3 4 P-trend FDR-Adjusted p HR per 1-SD Unadjusted FDR-
value (Q4 vs. Q1) increment adjusted

Trimethylamine N-oxide
Cases, n 73 65 68 44
Crude model Ref 0.98 (0.64, 1.53) 1.01 (0.66, 1.56) 0.60 (0.37, 0.98) 0.039 0.88 (0.75, 1.04) 0.162
MV1 Ref 0.96 (0.60, 1.54) 0.95 (0.58, 1.56) 0.51 (0.29, 0.88) 0.012 0.86 (0.72, 1.04) 0.123
MV2 Ref 0.98 (0.60, 1.59) 0.91 (0.55, 1.51) 0.52 (0.29, 0.89) 0.012 0.032 0.83 (0.69, 1.01) 0.059 0.078

Phosphocholine
Cases, n 75 66 57 49
Crude model Ref 0.99 (0.64, 1.52) 0.77 (0.49, 1.21) 0.56 (0.32, 0.98) 0.029 0.90 (0.77, 1.06) 0.224
MV1 Ref 1.11 (0.68, 1.80) 0.82 (0.48, 1.39) 0.51 (0.27, 0.99) 0.036 0.88 (0.74, 1.05) 0.157
MV2 Ref 1.19 (0.71, 1.97) 0.89 (0.51, 1.56) 0.56 (0.29, 1.09) 0.079 0.124 0.90 (0.75, 1.08) 0.268 0.329

Choline
Cases, n 52 67 63 65
Crude model Ref 1.20 (0.75, 1.90) 1.04 (0.63, 1.72) 1.34 (0.83, 2.18) 0.313 1.03 (0.86, 1.23) 0.729
MV1 Ref 1.33 (0.80, 2.24) 1.07 (0.61, 1.88) 1.20 (0.70, 2.07) 0.698 0.94 (0.77, 1.14) 0.538
MV2 Ref 1.42 (0.84, 2.42) 1.13 (0.63, 2.02) 1.23 (0.71, 2.13) 0.663 0.493 0.94 (0.77, 1.14) 0.523 0.557

C14:0 LPC
Cases, n 72 65 55 56
Crude model Ref 1.05 (0.68, 1.64) 0.91 (0.57, 1.45) 0.91 (0.57, 1.44) 0.590 1.01 (0.85, 1.19) 0.910
MV1 Ref 1.02 (0.61, 1.74) 0.89 (0.53, 1.49) 0.93 (0.55, 1.55) 0.669 1.03 (0.86, 1.24) 0.741
MV2 Ref 1.05 (0.62, 1.78) 0.88 (0.52, 1.49) 0.88 (0.52, 1.50) 0.548 0.650 1.01 (0.84, 1.23) 0.879 0.879

C16:1 LPC
Cases, n 78 61 58 50
Crude model Ref 0.89 (0.57, 1.38) 0.84 (0.54, 1.31) 0.72 (0.45, 1.16) 0.181 0.91 (0.77, 1.08) 0.317
MV1 Ref 0.77 (0.47, 1.26) 0.93 (0.57, 1.52) 0.75 (0.45, 1.26) 0.387 0.91 (0.76, 1.11) 0.367
MV2 Ref 0.77 (0.47, 1.28) 1.03 (0.63, 1.68) 0.75 (0.44, 1.27) 0.451 0.318 0.93 (0.77, 1.12) 0.461 0.526

C16:0 LPC
Cases, n 102 62 51 36
Crude model Ref 0.60 (0.39, 0.92) 0.58 (0.37, 0.91) 0.41 (0.24, 0.69) 0.001 0.69 (0.56, 0.83) <0.001
MV1 Ref 0.53 (0.33, 0.85) 0.58 (0.36, 0.93) 0.41 (0.23, 0.74) 0.002 0.69 (0.56, 0.84) <0.001
MV2 Ref 0.50 (0.31, 0.82) 0.56 (0.35, 0.92) 0.42 (0.24, 0.75) 0.002 0.012 0.69 (0.56, 0.85) <0.001 0.003

C18:1 LPC
Cases, n 111 59 48 30
Crude model Ref 0.52 (0.34, 0.79) 0.44 (0.28, 0.68) 0.31 (0.18, 0.51) <0.001 0.66 (0.56, 0.77) <0.001
MV1 Ref 0.51 (0.32, 0.82) 0.50 (0.32, 0.80) 0.34 (0.19, 0.60) <0.001 0.67 (0.56, 0.80) <0.001
MV2 Ref 0.52 (0.32, 0.85) 0.54 (0.33, 0.86) 0.36 (0.20, 0.65) <0.001 0.008 0.69 (0.58, 0.82) <0.001 0.003

C18:0 LPC
Cases, n 108 64 48 30
Crude model Ref 0.55 (0.36, 0.84) 0.42 (0.27, 0.66) 0.37 (0.21, 0.64) <0.001 0.59 (0.48, 0.74) <0.001
MV1 Ref 0.59 (0.37, 0.96) 0.48 (0.29, 0.79) 0.34 (0.18, 0.68) <0.001 0.63 (0.50, 0.79) <0.001
MV2 Ref 0.58 (0.36, 0.95) 0.47 (0.28, 0.79) 0.37 (0.19, 0.74) 0.001 0.013 0.65 (0.51, 0.82) <0.001 0.003

C20:4 LPC
Cases, n 103 56 47 43
Crude model Ref 0.52 (0.34, 0.80) 0.48 (0.31, 0.76) 0.45 (0.28, 0.73) <0.001 0.67 (0.56, 0.80) <0.001
MV1 Ref 0.49 (0.30, 0.78) 0.54 (0.33, 0.87) 0.43 (0.25, 0.75) 0.001 0.66 (0.54, 0.80) <0.001
MV2 Ref 0.48 (0.29, 0.79) 0.57 (0.35, 0.93) 0.44 (0.25, 0.78) 0.003 0.013 0.67 (0.54, 0.81) <0.001 0.003

C22:6 LPC
Cases, n 93 72 52 33
Crude model Ref 1.03 (0.68, 1.55) 0.71 (0.47, 1.09) 0.39 (0.23, 0.66) <0.001 0.76 (0.65, 0.89) 0.001
MV1 Ref 1.12 (0.70, 1.79) 0.98 (0.63, 1.54) 0.40 (0.22, 0.74) 0.009 0.78 (0.66, 0.94) 0.007
MV2 Ref 1.13 (0.71, 1.82) 1.07 (0.67, 1.70) 0.41 (0.22, 0.77) 0.022 0.014 0.80 (0.67, 0.96) 0.016 0.028

C18:1 LPC plasmalogen
Cases, n 120 61 48 14
Crude model Ref 0.56 (0.37, 0.86) 0.38 (0.24, 0.59) 0.18 (0.09, 0.37) <0.001 0.42 (0.33, 0.55) <0.001
MV1 Ref 0.68 (0.43, 1.09) 0.44 (0.27, 0.72) 0.14 (0.06, 0.32) <0.001 0.45 (0.34, 0.58) <0.001
MV2 Ref 0.67 (0.42, 1.08) 0.45 (0.27, 0.74) 0.15 (0.06, 0.35) <0.001 0.008 0.46 (0.35, 0.59) <0.001 0.003

C16:0 LPE
Cases, n 94 73 50 32
Crude model Ref 0.97 (0.64, 1.45) 0.59 (0.38, 0.92) 0.45 (0.26, 0.78) 0.001 0.73 (0.61, 0.87) 0.001
MV1 Ref 0.86 (0.54, 1.36) 0.56 (0.35, 0.89) 0.49 (0.27, 0.88) 0.003 0.74 (0.61, 0.89) 0.002
MV2 Ref 0.89 (0.55, 1.44) 0.55 (0.34, 0.88) 0.46 (0.25, 0.84) 0.002 0.026 0.73 (0.60, 0.89) 0.002 0.004
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TABLE 2
Continued.

Quartile of plasma metabolite concentration P

Metabolite 1 2 3 4 P-trend FDR-Adjusted p HR per 1-SD Unadjusted FDR-
value (Q4 vs. Q1) increment adjusted

C18:1 LPE
Cases, n 73 66 61 49
Crude model Ref 0.89 (0.57, 1.38) 0.84 (0.54, 1.30) 0.60 (0.37, 0.95) 0.034 0.81 (0.69, 0.95) 0.011
MV1 Ref 0.77 (0.47, 1.26) 0.79 (0.50, 1.26) 0.57 (0.34, 0.96) 0.045 0.82 (0.70, 0.99) 0.040
MV2 Ref 0.79 (0.48, 1.32) 0.86 (0.53, 1.39) 0.59 (0.35, 1.00) 0.073 0.075 0.84 (0.69, 1.00) 0.058 0.078

l-Carnitine
Cases, n 52 79 69 49
Crude model Ref 1.81 (1.12, 2.91) 1.44 (0.89, 2.34) 0.91 (0.54, 1.55) 0.379 0.90 (0.77, 1.05) 0.198
MV1 Ref 1.76 (1.07, 2.90) 1.09 (0.64, 1.88) 0.75 (0.41, 1.36) 0.108 0.84 (0.70, 1.01) 0.071
MV2 Ref 1.77 (1.06, 2.94) 1.07 (0.61, 1.88) 0.69 (0.37, 1.26) 0.066 0.280 0.81 (0.67, 0.97) 0.025 0.040

α-Glycerophosphocholine
Cases, n 81 56 71 40
Crude model Ref 0.70 (0.44, 1.12) 0.81 (0.51, 1.28) 0.57 (0.32, 1.02) 0.091 0.70 (0.54, 0.92) 0.011
MV1 Ref 0.58 (0.35, 0.98) 0.75 (0.46, 1.20) 0.47 (0.25, 0.90) 0.044 0.61 (0.45, 0.81) 0.001
MV2 Ref 0.54 (0.31, 0.93) 0.75 (0.46, 1.23) 0.46 (0.24, 0.89) 0.051 0.035 0.61 (0.45, 0.83) 0.002 0.004

Betaine
Cases, n 76 69 59 43
Crude model Ref 0.82 (0.53, 1.26) 0.82 (0.52, 1.29) 0.48 (0.29, 0.78) 0.005 0.83 (0.69, 0.98) 0.035
MV1 Ref 0.90 (0.57, 1.43) 0.74 (0.45, 1.21) 0.41 (0.23, 0.73) 0.002 0.77 (0.64, 0.94) 0.009
MV2 Ref 0.87 (0.54, 1.39) 0.73 (0.43, 1.24) 0.41 (0.23, 0.74) 0.003 0.012 0.75 (0.61, 0.91) 0.004 0.008

1Values are HRs (95% CIs) unless otherwise indicated. A natural logarithmic transformation was applied to the raw values of individual metabolites. Cox
regression analysis was used. MV1 adjusted for age (years), sex (male or female), BMI (kg/m2), intervention group (MedDiet+ EVOO orMedDiet+ nuts), and
baseline fasting glucose (milligrams per deciliter) (centered on the sample mean and adding the quadratic term); MV2 additionally adjusted for smoking (never,
current, or former), leisure-time physical activity (metabolic equivalent tasks in minutes per day), dyslipidemia, and hypertension. FDR-controlled adjustments
were conducted by applying the method of Benjamini and Hochberg. EVOO, extra-virgin olive oil; FDR, false discovery rate; LPC, lyso-phosphatidylcholine;
LPE, lyso-phosphatidylethanolamine; MedDiet, Mediterranean diet; MV, multivariable model; PREDIMED, Prevención con Dieta Mediterránea; Q, quartile;
Ref, reference.

FIGURE 1 HRs (95% CIs) for type 2 diabetes according to baseline metabolites analyzed as continuous (per 1-SD increment) by both Mediterranean
diet intervention groups (merged) (A) and the control group (B). All HRs were adjusted for age (y), sex (male or female), BMI (kg/m2), baseline fasting
glucose (mg/dL; mean + quadratic term of the centered mean), smoking (never, current, or former), leisure-time physical activity (metabolic equivalent tasks
in min/d), dyslipidemia, and hypertension. A natural logarithmic transformation was applied to the raw value. FDR-controlled adjustments were conducted by
applying the method of Benjamini and Hochberg. Alpha-glycelop, α-glycerophosphocholine; FDR, false discovery rate; LPC, lysophosphatidylcholine; LPE,
lysophosphatidylethanolamine; plas, plasmalogen; TMAO, trimethylamine N-oxide.

after adjustment for multiple testing, we found that per 1-SD in-
crease in C16:0 LPC, C18:1 LPC, C18:0 LPC, and C18:1 LPC
plasmalogen concentrations, the risk of T2D decreased by 35%
(HR: 0.65; 95% CI: 0.49, 0.86), 37% (HR: 0.63; 95% CI: 0.47,

0.85), 32% (HR: 0.68; 95% CI: 0.50, 0.92), and 42% (HR: 0.58;
95% CI: 0.42, 0.81), respectively. These significant inverse asso-
ciations observed in the overall group persisted in the MedDiet
group, whereas only C18:1 LPC was found to be significantly
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TABLE 3
Associations of 1-y changes in individual metabolite concentrations with the risk of type 2 diabetes in the PREDIMED trial, 2003–2010, in the overall group1

Quartile of plasma metabolite concentration

Metabolite 1 2 3 4 P-trend FDR-adjusted P (Q4 vs. Q1)

Trimethylamine N-oxide
Cases, n 44 44 45 48
MV Ref 0.58 (0.31, 1.10) 0.64 (0.32, 1.25) 0.49 (0.25, 0.98) 0.081 0.100

Phosphocholine
Cases, n 44 44 45 48
MV Ref 0.75 (0.42, 1.36) 1.00 (0.59, 1.71) 0.74 (0.40, 1.37) 0.484 0.598

Choline
Cases, n 49 44 50 37
MV Ref 1.11 (0.61, 2.02) 0.83 (0.46, 1.51) 1.04 (0.54, 2.00) 0.895 0.924

C14:0 LPC
Cases, n 52 47 39 43
MV Ref 0.77 (0.42, 1.40) 0.79 (0.43, 1.47) 0.79 (0.38, 1.64) 0.587 0.769

C16:1 LPC
Cases, n 57 35 43 45
MV Ref 0.47 (0.24, 0.91) 0.60 (0.33, 1.10) 0.86 (0.44, 1.68) 0.657 0.811

C16:0 LPC
Cases, n 55 44 42 40
MV Ref 0.57 (0.31, 1.04) 0.38 (0.21, 1.69) 0.47 (0.24, 0.93) 0.014 0.100

C18:1 LPC
Cases, n 44 53 36 44
MV Ref 0.76 (0.42, 1.38) 0.55 (0.29, 1.01) 0.44 (0.21, 0.90) 0.016 0.100

C18:0 LPC
Cases, n 49 45 51 34
MV Ref 0.63 (0.36, 1.12) 0.47 (0.25, 0.90) 0.45 (0.22, 0.92) 0.018 0.100

C20:4 LPC
Cases, n 48 41 42 49
MV Ref 0.74 (0.41, 1.35) 0.53 (0.27, 1.03) 0.54 (0.28, 1.04) 0.047 0.130

C22:6 LPC
Cases, n 38 41 50 50
MV Ref 0.99 (0.55, 1.79) 0.55 (0.27, 1.10) 0.72 (0.36, 1.47) 0.334 0.598

C18:1 LPC plasmalogen
Cases, n 52 57 40 32
MV Ref 0.76 (0.43, 1.33) 0.30 (0.15, 0.58) 0.33 (0.17, 0.66) <0.001 0.032

C16:0 LPE
Cases, n 44 51 45 34
MV Ref 0.87 (0.48, 1.58) 0.91 (0.51, 1.62) 0.49 (0.25, 0.98) 0.052 0.100

C18:1 LPE
Cases, n 42 50 32 56
MV Ref 1.19 (0.66, 2.12) 0.69 (0.38, 1.27) 0.85 (0.43, 1.67) 0.408 0.811

l-Carnitine
Cases, n 35 42 61 42
MV Ref 1.16 (0.58, 2.32) 2.05 (1.03, 4.11) 0.86 (0.38, 1.91) 0.725 0.811

α-Glycerophosphocholine
Cases, n 49 47 51 33
MV Ref 0.40 (0.21, 0.78) 0.43 (0.22, 0.83) 0.45 (0.21, 0.98) 0.084 0.100

Betaine
Cases, n 41 47 45 48
MV Ref 1.41 (0.77, 2.59) 0.90 (0.47, 1.73) 1.03 (0.54, 1.95) 0.732 0.924

1Values are HRs (95% CIs). We first calculated the ratio between 1-y and baseline concentrations of individual metabolites and then normalized this ratio
with the natural logarithmic transformation. Cox regression analysis was used. The MV was adjusted for baseline concentrations of metabolites, age (years),
sex (male or female), intervention group (MedDiet + EVOO or MedDiet + nuts), BMI (kg/m2), baseline fasting glucose (milligrams per deciliter) (centered on
the sample mean and adding the quadratic term), smoking (never, current, or former), leisure-time physical activity (metabolic equivalent tasks in minutes per
day), dyslipidemia, and hypertension. FDR-controlled adjustments were conducted by applying the method of Benjamini and Hochberg. EVOO, extra-virgin
olive oil; FDR, false discovery rate; LPC, lyso-phosphatidylcholine; LPE, lyso-phosphatidylethanolamine; MedDiet, Mediterranean diet; MV, multivariable
model; PREDIMED, Prevención con Dieta Mediterránea; Q, quartile; Ref, reference.
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PLASMA PROFILE
TMAO

L-Carnitine
Choline
Betaine

Lyso-phospocholines
Lyso-plasmalogens

a-glycerophosphocholine

GUT
MICROBIOME

TARGET T2D TISSUES

Liver
Muscle

Adipose tissue

MEDDIET GENETIC FACTORS

FIGURE 2 Open homeostasis pattern. aThe role of the Mediterranean diet; bthe role of the microbiome; cmetabolites absorbed, produced and transformed,
or methylated; dthe role of T2D pathogenicity target tissues. MEDDIET, Mediterranean diet; T2D, type 2 diabetes; TMAO, trimethylamine-N-oxide.

associated with lower risk in the control group. However, P-

Q19
Q20
Q21

interaction values between C16:0 LPC, C18:1 LPC, C18:0 LPC,
and the intervention group (MedDiet compared with the control
group) and T2D were nonsignificant (Supplemental Table 4).Q22
There was a tendency toward higher T2D risk for those individ-
uals in the control group with higher 1-y changes in betaine con-
centrations, but the results were not significant (HR: 1.25; 95%
CI: 0.81, 1.92; P-interaction = 0.012). There were no significant
differences in mean 1-y changes in metabolite concentrations be-

Q23

tween the MedDiet and control groups (data not shown).

Predictors of TMAO concentrations from regression
analyses

A multiple linear regression was used to assess potential rela-
tions between TMAO and choline, betaine, and l-carnitine, while
adjusting for age, sex, and HOMA-IR (Supplemental Tables 5
and 6). Baseline and 1-y changes in l-carnitine concentrations
were positively associated with TMAO concentrations at base-
line and at 1 y, respectively.Q24

DISCUSSION

With the use of a case-cohort design within the PREDIMED
trial and aimed at identifying plasma metabolites potentially
related to T2D in 892 individuals at high CVD risk, we ob-
served that higher baseline concentrations of TMAO, l-carnitine,
betaine, α-glycerophosphocholine, and several LPC and LPE
species were associated with lower risk of T2D development, in-
dependently of recognized T2D risk factors (i.e., age, sex, BMI,
blood glucose, smoking). At baseline, the participants in the high-
est quartile of TMAOplasma concentrations had a 48% lower risk
of developing T2D compared with the lowest quartile. Notably,
the association between TMAO and T2D persisted and remained
significant after sensitivity analyses.

l-Carnitine affects insulin-mediated glucose uptake and oxi-
dation in diabetics and healthy controls, improving insulin sensi-
tivity and blood glucose concentrations in patients with T2D (11)
and mitochondrial utilization of fatty acids (30). Betaine is asso-
ciated with a lower risk of diabetes, presumably because it serves
as a methyl donor in the methionine cycle and its administra-
tion decreases homocysteine concentrations (31–33). Recently,
plasma betaine concentrations were reported to be reduced in

insulin-resistant humans and were associated with insulin sen-
sitivity (9). In addition, lower plasma concentrations of betaine
were reported in patients with metabolic syndrome compared
with a healthy population (34). The possible protective role of
l-carnitine and betaine in T2D development was also clearly sup-
ported by our findings.

The gut microbiome is involved in gastrointestinal and im-
mune function as well as the digestion of nutrients, and may thus
affect the risk of obesity and T2D (35). l-Carnitine, choline, and
betaine can be metabolized by the microbiome to TMA, which
is absorbed by the gut and further oxidized to TMAO in the liver
(Figure 2). Among these substrates, l-carnitine was identified in
our study as the sole positive predictor of plasma TMAO con-
centrations (10, 36). l-Carnitine may be transformed to TMAO
through ≥2 independent pathways catalyzed by l-carnitine de-
hydrogenase or carnitine oxygenase or reductase (10). TMAO is, Q25
on the other hand, considered to be a risk factor for CVD (36).
However, circulating TMAO is influenced by the gutmicrobiome,
kidney function, as well as a FMO3 genotype, factors that may
confound the relation between TMAO and chronic disease (37).
Whether TMAO is a causal factor for disease development and
progression or simply a biomarker of metabolic adaptation is un-
clear and needs to be explored further.

With regard to the inverse associations between TMAO plasma
concentrations and the risk of developing T2D, our findings
are compatible with a recent prospective study (38) involving
a consecutive sample of 37 obese subjects undergoing bariatric
surgery, 17 of whom had diabetes. One year after surgery, TMAO
plasma concentrations increased by ? 2-fold compared with pre-
operative concentrations, which was significantly correlated with Q26
the corresponding 1-y decrease in glycated hemoglobin after
the bariatric surgery (r = –0.39, P = 0.025). In our study,
Spearman’s correlation analysis between TMAO and 1-y in-
crease in HOMA-IR, a value used to quantify insulin resis-
tance, showed a significant negative correlation (r = –0.13,
P = 0.026).

On the other hand, a study conducted in 283 individuals that
examined cardiometabolic risk factors and pathways associated
with TMAO concentration reported that the presence of diabetes
was associated with higher concentrations of plasma TMAO (7).
Similarly, Shan et al. (39) measured plasma concentrations of
TMAO in a case-control study in 2694 participants and noted
that higher plasma TMAO was associated with increased odds
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of T2D. In addition, in a larger study in 4007 patients under-
going coronary angiography, increased plasma concentrations
of TMAO were related to increased concentrations of fasting
glucose and diabetes (40). These studies (7, 39, 40) were not
designed to investigate associations between TMAO and T2D
prospectively, whereas our data showed that higher TMAO con-
centrations can be prospectively associated with decreased T2D
risk. However, differences in study design and the populations
studied can only partly explain the overall discrepancies. Because
TMAO was reported to be highly variable in plasma and urine
(log-normal reference change values ranging from 403% to 80%
in plasma) of overweight people with T2D over a 2-y period (41),
further research is needed to explain these variations. Overall, the
exact mechanisms associating plasma TMAO concentrations and
T2D remain unclear (10). On the other hand, the possibility that
changes in TMAO just represent an epiphenomenon cannot be
excluded.

TMAO and choline concentration changes were linked to risk
profiles with altered concentrations of phospholipids and methy-
lation markers, with total or specific LPC concentrations tend-
ing to be lower among diabetics (7, 42, 43). LPC may play an
important role in glucose homeostasis by stimulating adipocyte
glucose uptake, potentiating glucose-stimulated insulin secretion
and lowering blood glucose concentrations (43, 44). In our study,
Spearman’s correlations between baseline metabolite concentra-
tions and 1-y changes in HOMA-IR values indicated a signifi-
cant negative correlation between C18:1 LPC plasmalogen and
HOMA-IR (r = –0.14, P = 0.010). Choline plasmalogens with
18:1 in the sn-2 position are strongly correlated with a wide range
of risk factors for metabolic syndrome (45). Nonalcoholic fatty
liver disease shares common characteristics with metabolic syn-
drome, such as insulin resistance (46), and has been associated
with decreased plasma plasmalogens (47). In our study, higher
C18:1 LPC plasmalogen plasma concentrations may reflect a de-
crease in insulin resistance during follow-up and a potential im-
provement in liver function, resulting in increased secretion of
plasmalogens into the circulation. Because the role of LPCs in
diabetes pathophysiology is not completed understood, we can-
not exclude the possibility that they do not offer any protection
against the disease.

Another choline compound, α-glycerophosphocholine, which
in our study was found to be associated with a lower risk of
T2D, can produce phosphorylcholine and acetylcholine (Ach),
a neurotransmitter responsible for initiating skeletal muscle con-
tractions (48). Activation of muscarinic Ach receptors in skeletal
muscle cells stimulates glucose uptake via a mechanism indepen-
dent of the insulin-stimulated pathway (49). Because all muscle
movements are related to contraction, and contraction is related
to available Ach stores, maximizing Ach may optimize muscular
performance and affect insulin sensitivity, GLUT4 availability forQ27
glucose uptake, etc.

We did not observe any significant difference in the association
of most 1-y change metabolites with T2D risk between the Med-
Diet intervention and control groups. Furthermore, the interven-
tion diets did not appear to significantly change the studymetabo-
lite concentrations during the intervention. We found a stronger
inverse association only for α-glycerophosphocholine with T2D
risk in theMedDiet intervention compared with the control group
with a significant test of this interaction. This finding needs fur-
ther investigation.

The results of the present study should be interpreted in the
context of its limitations and strengths. First, participants were
elderly Mediterranean individuals at high CVD risk and this may
limit the generalizability of the findings to other age groups or
populations. Second, even though we adjusted for several poten-
tial confounders, residual confounding may exist. With regard to
strengths, the prospective evaluation of the association between
metabolite concentrations and incident T2D, in the frame of a
case-cohort design, minimizes biases that can affect case-control
studies.

In conclusion, our study documented, for the first time to
our knowledge, a strong inverse prospective association between
plasma TMAO concentrations and relevant metabolite profile
with incident T2D risk in an elderly population at high CVD
risk. Because TMAO is a metabolite that has shown controver-
sial associations with several chronic diseases, these results may
be reported in the literature to avoid bias but must be interpreted
cautiously and need to be replicated in the future in other pop-
ulations. The potential mechanisms linking the aforementioned
metabolites and diabetes risk must also be further investigated.
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